
EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer
(Guest Editors)

Volume 37 (2018), Number 2

MIQP-based Layout Design for Building Interiors

Wenming Wu1,2 Lubin Fan2 Ligang Liu1 Peter Wonka2

1University of Science and Technology of China, China
2King Abdullah University of Science & Technology, Saudi Arabia

Floorplans 3D Rendering

1st floor

2nd floor

1st floor 2nd floor

(a) (b)

Floorplan 3D Rendering
5m

Foyer
2.80 x 2.45

Kitchen
3.50 x 2.45

Living
2.80 x 3.85

Dining
3.85 x 2.80

Corridor
1.40 x 3.50

Bedroom1
2.15 x 2.45

M. Bedroom
4.90 x 2.45

Corridor
2.50 x 1.40

Figure 1: We propose a framework that generates building interiors with high-level constraints, e.g., room size, room position, room ad-
jacency, and the outline of the building. (a) The layout of a two-storey house and corresponding 3D renderings. (b) A large-scale example
depicting an office building. For such large-scale layouts, our method is faster by multiple orders of magnitude than previous methods.

Abstract
We propose a hierarchical framework for the generation of building interiors. Our solution is based on a mixed integer quadratic
programming (MIQP) formulation. We parametrize a layout by polygons that are further decomposed into small rectangles.
We identify important high-level constraints, such as room size, room position, room adjacency, and the outline of the building,
and formulate them in a way that is compatible with MIQP and the problem parametrization. We also propose a hierarchical
framework to improve the scalability of the approach. We demonstrate that our algorithm can be used for residential building
layouts and can be scaled up to large layouts such as office buildings, shopping malls, and supermarkets. We show that our
method is faster by multiple orders of magnitude than previous methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computing Methodologies]: Computer Graphics—
Computational Geometry and Object Modeling

1. Introduction

We study the automatic computation of interior building layouts,
to either more quickly explore design variations for architects or to
completely replace the manual modeling process for creating large-
scale virtual worlds. The design process typically starts by collect-
ing a list of requirements (constraints) for the layout, e.g., room
size and room adjacency. Then the designer uses trial-and-error to
generate one or multiple layouts using a combination of intuition,
prior experience, and professional knowledge. This usually takes
from a couple of days to several weeks.

There are already several successful methods for generating
building layouts automatically. The first aspect of layout gener-
ation is the determination of what constraints to use. Merrel et
al. [MSK10] sample constraints from a Bayesian network. The sec-
ond aspect of layout generation is the actual optimization step that
computes a layout that fulfills the given constraints. Our work fo-
cuses on this part of layout generation. The most popular approach
for this step is to use stochastic sampling on a framework that eval-
uates constraints as a black box. For example, Metropolis-Hastings
(used by Merrel et al. [MSK10]), simulated annealing, or genetic
algorithms are possible alternatives. The popularity of the approach

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

Level 1 Level 2 Floorplan 3D renderingInput
Size range constraints: [1,6]

Boundary constraints
* Foyer

Adjacency constrains
* Kitchen - Living room
* Foyer - Living room
* Bedroom - living room
* Bedroom - bath

Aspect ratio: [1,2]

Size target:
* Foyer: (2.03, 2.92)
* Kitchen: (3.28, 2.26)
* Living room: (3.85, 5.65)
* Bedroom: (3.20, 4.42)
* Bath room: (1.88, 2.35)

Kitchen

Living
Room

Bedroom

Bath Foyer

Kitchen
1.75 x 2.50

Living
Room

1.75 x 2.50

Fo
ye

r
2.

25
 x

 1
.5

0

B
at

h
2.

25
 x

 1
.7

5

Bedroom
1.75 x 2.50

Kitchen

Living
Room

Foyer

Bedroom

Figure 2: Overview of our framework. Given a list of high-level constraints and an outline as input (Input), we compute a layout using a
hierarchical framework. Level 1 shows an initial layout and Level 2 shows the layout including local refinements. Finally, additional details
can be added to visualize the results as architectural floorplans or 3D models.

is due to its generality as almost any type of constraints can be
incorporated as a black box. The downside of this approach is
that it degenerates on medium and larger-scale layouts and typi-
cally cannot find a single valid solution in a reasonable amount of
time. We therefore propose to employ more powerful optimization
techniques that scale better to larger layouts. For example, Peng et
al. [PYW14] apply linear integer programming to generate layouts
by tiling templates. Their tilling-based approach scales better, but
it is less general. They can use only pre-defined room templates.

Our new framework overcomes the scalability problem of
stochastic methods without all the restrictions on generality im-
posed by the tiling-based approach. Our solution has multiple com-
ponents that are coordinated with each other. We formulate the lay-
out optimization problem as a mixed integer quadratic program-
ming (MIQP) problem. The integer variables are used to account
for different room configurations. An integral component to this
formulation is our proposed parametric layout representation. Each
room is represented as a polygon that consists of a set of small
rectangles. This enables us to generate rooms with various shapes
in contrast to Peng et al. [PYW14]. In addition, this representation
enables us to formulate important high-level constraints about room
size and adjacency in a manner that is compatible with MIQP. We
also propose a hierarchical framework to improve the scalability of
our approach. Fig. 1 shows layouts of a residential building and an
office building generated by our algorithm.

We demonstrate our method on small-scale layouts of residen-
tial buildings and large-scale layouts such as office buildings and
supermarkets. Our main contributions are as follows:

• We propose a layout computation method that is faster by mul-
tiple orders of magnitude than previous work built on stochastic
optimization.
• We propose a parametric representation of interior layouts that

is more general than previous methods based on tiling.
• We can generate results on a larger scale than achieved by previ-

ous work.

2. Related Work

Our work relates to research in three areas: VLSI design, architec-
tural space planning, and urban layout modeling.

VLSI design. VLSI designs can be categorized as slicing struc-

tures that are presented by binary trees, and non-slicing structures
that are more general. Topological representations are crucial for
VLSI floorplan design. Popular VLSI floorplan representations in-
clude the following: sequence pair (SP) [SVW∗11], bounded slic-
ing grid (BSG) [NFMK97], B*-tree [MXM09], ordered tree (O-
Tree) [NNA06], transitive closure graph (TCG) [LC04], corner
block list (CBL) [DZH∗02], and integer coding (IC) [CGC10].
Most VLSI design algorithms search for a floorplan using stochas-
tic approaches, e.g., simulated annealing [Sec12], genetic algo-
rithms [SDD12], particle swarm optimization [CGC10], and dif-
ferential evolution [MAR07]. Simulated annealing is popular in
modern design problems using the B*-tree [CC06] and sequence
pair [KF00], but it requires expensive computations and it can
struggle to achieve optimal or near optimal solutions. Genetic al-
gorithms [CZ10, SDD12] are another algorithm class explored by
researchers in their quest for good floorplan algorithms. However,
as a generate-and-test methodology, genetic algorithms have very
similar shortcomings to simulated annealing. We propose a more
general representation for layout design in which each room is rep-
resented as a polygon that can be further decomposed into a set of
rectangles and our constraints are different.

Architectural space planning. Architectural space planning is
concerned with planning buildings of different scales. One popu-
lar approach is to apply an expert system [FUC∗88, KS05]. Río-
Cidoncha et al. [DRCMPI07] develop a model for facility layout
design by combining an expert system and artificial intelligence.
Another class of methods applies shape grammars that consist of
a set of rules that is recursively applied to an initial assertion to
produce a final statement, e.g., [RCMLS96, LHP11]. Harada et
al. [HWB95] develop a system for interactive manipulation of ar-
chitectural layouts by using shape grammars. Duarte [Dua05] pro-
poses an interactive system for generating layouts on the web based
on a discursive grammar that consists of a programming grammar
and a designing grammar. The evolutionary approach is also used
in architectural space planning [EF99,Nil06,Dou07]. Bahrehmand
et al. [BBM∗17] present an interactive layout solver based on the
evolutionary approach. It assists designers in layout planning by
recommending personalized space arrangements according to ar-
chitectural guidelines and user preferences. The major drawback of
evolutionary algorithms is the poor performance. The constraint-
based approach [BF91,LFT00,Hsu00,DB08] seems to be a promis-
ing direction for our work.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

Merrel et al. [MSK10] learn attributes of rooms from a given
dataset by a Bayesian network and synthesize the layout by the
stochastic method. The main problem of the approach is that
it is not suitable for large-scale examples due to the stochas-
tic method. Rosser et al. [RSM17] also propose a data-driven
method. They learn building measurements to produce interior
plans. In [LYAM13], the authors present an interactive system to
create interior room layouts subject to design constraints, user pref-
erences, and manufacturing considerations. Hua et al. [Hua16] de-
velop a method for automatically constructing irregular floor plans.
Given image patterns, the program produces a variety of layouts
that satisfy both geometric and topological requirements. Bao et
al. [BYMW] propose a method to explore building layouts. To ob-
tain variations in connectivity, they use standard simulated anneal-
ing. Liu et al. [LWKF17] apply integer programming to encode
high-level constraints. However, their goal is to evaluate the ex-
tracted constraints in recovering the floorplan data from a raster
image.

Urban layout modeling. Our problem also relates to urban lay-
out modeling. [Ali12, STBB14] review the topic in a broad con-
text. One common approach generates large-scale layouts by first
creating the road network and then by generating parcels. An in-
teractive example-based system for synthesizing urban layouts is
proposed by [AVB08]. They use the structure and image data of
real-world urban areas for complex urban layout generation. Net-
work design can be seen as a dual problem in layout design. Chen
et al. [CEW∗08] create road networks from an existing street net-
work by designing an underlying tensor field and editing the graph
representation. Yang et al. [YWVW13] combine hierarchical split-
ting and global optimization to guarantee the fairness and regularity
of the generated streets and parcels. Improving upon this previous
work, Peng et al. [PYW14] propose a novel tiling-based approach
with deformable templates. Their subsequent work [PYB∗16] pro-
poses an integer-programming-based approach to generate net-
works starting from functional specifications. Feng et al. [FYY∗16]
focus on mid-scale layout modeling based on human crowds. Given
a layout domain, their approach synthesizes crowd-aware layouts
by considering the crowd flow. Urban layout modeling has also
been widely used in the design of video game environments. Ma
et al. [MVLS14] propose an algorithmic approach for automati-
cally laying out complex game levels that conform to the designer’s
specifications.

3. Overview

Our framework consists of the following components:

– First, we introduce a parametric representation that describes a
layout by a set of axis-aligned polygons. To make the model bet-
ter suitable for optimization, we also present a rectangle-based
layout representation (Section 4).

– Second, we describe the basic formulation of our MIQP-based
method (Section 5.1).

– Third, we describe a set of high-level constraints for layout gen-
eration (Section 5.2).

– Fourth, we propose a hierarchical framework to extend the basic
method (Section 5.3).

Bedroom

Bedroom

Obstacle

w

d

Living Room

Living Room

Bathroom

KitchenKitchen

Living Room

Bedroom

Bathroom

Bedroom

 (x ,y ,w ,d ,l)i i i i i

r1

r2 r3

r4 r5

r6

Bedroom

Figure 3: An interior layout consists of four rooms, i.e., living
room, bedroom, bathroom, and kitchen. Left: each room is rep-
resented as an axis-aligned polygon defined by points, r = {ri}.
Right: the layout is presented by a set of room rectangles by de-
composing the polygonal room into small rectangles with the same
label. A room rectangle is described by a tuple (xi,yi,wi,di, li). The
layout domain is presented as the bounding box of the domain sub-
tracted by obstacle rooms shown in gray.

– Fifth, we evaluate our method and perform comparisons with
previous methods on examples of different scales (Section 6).

Fig. 2 shows an example of generating a layout of an apartment.
Given the outline of the apartment and a set of user-specified high-
level constraints, our method generates the layout in a coarse-to-
fine manner, i.e., two levels in this example. Fig. 2 right shows the
final result.

4. A Parametric Layout Representation

Layout L of a building consists of its domain D given as an axis-
aligned polygon and rooms R = {ri}N

i=1, where N is the number
of rooms in the layout (see Fig. 3 left). The shape of the domain
is an axis-aligned polygon that is defined by an array of vertices,
D = {di}. Each room is also an axis-aligned polygon defined by
vertices, ri = {r j

i }, and a label, l, to describe its functionality, e.g.,
kitchen, living room, etc. Given the layout domain, the goal of the
layout design problem is to arrange a set of rooms inside the domain
according to some constraints. A valid layout should satisfy two
basic constraints: first, all rooms are inside the domain; second,
there is no overlap between rooms. A layout should also satisfy a
set of high-level constraints describing how a synthesized layout
should behave, e.g., room size and adjacency.

There are two challenges of this parametric representation. First,
the number of vertices of each polygonal room is not known in
advance. This means that the number of variables has to change
during the optimization, even with a fixed number of rooms. Sec-
ond, it is not easy to formulate high-level constraints for arbitrary
polygons. For example, expressing constraints about the adjacency
between general polygonal rooms is very difficult. We therefore in-
troduce the computational object, room rectangle, that is defined as
the basic element of a layout (see Fig. 3 right). A room rectangle is
described by a tuple (xi,yi,wi,di, li) where (xi,yi) denotes the posi-
tion of the bottom-left corner of the rectangle, (wi,di) denotes the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

 (a) (b)

Kitchen
3.00 x 2.25

Living & dining
4.75 x 3.75

Bedroom
2.75 x 4.25

Living Room
3.50 x 2.80

Bedroom 1
3.50 x 2.45

Kitchen
2.10 x 2.80

S. Room
2.10 x 2.80

M. Bedroom
3.85 x 3.85

Dining
2.80 x 2.45

Bedroom 2
3.15 x 2.10

Study
2.80 x 3.50

Foyer
2.10 x 3.85

Corridor
3.15 x 1.05

Figure 4: Layouts synthesized by our algorithm. Left: the basic for-
mulation can produce layouts in which both the domain and rooms
are rectangles. Right: a complicated layout synthesized by the hi-
erarchical framework with user-specified high-level constraints.

width and depth, and li denotes its label. Then, a polygonal room,
ri, can be presented as the union of a set of room rectangles with
the same label. The boundary of the room polygon is the outline of
the union of rectangles in the polygon. The layout domain can also
be presented by rectangles (see Fig. 3). The polygonal domain can
be described as its bounding box minus a set of special rectangles
labeled as obstacle. Such obstacle rectangles cannot be covered by
any room. By introducing the room rectangle, the layout, L, can
be presented by a set of rectangular rooms. Given the number of
room rectangles of the layout, N, the number of parameters is fixed,
i.e., 4×N. Moreover, the relationship between rectangles is easy to
evaluate. According to the definitions of the interior layout and the
room rectangle, our problem is to find the optimal set of rectangles,
i.e., {(xi,yi,wi,di, li)}.

Given the layout domain and the number of rooms, the interior
layout design task changes to generate a valid layout in which room
rectangles are tiled in the domain with optimal parameters. We ap-
ply mixed integer quadratic programming (MIQP) optimization to
solve the tiling problem. Then, we obtain the final layout by merg-
ing connected room rectangles with the same label.

5. MIQP-based Hierarchical Layout Design

We introduce our algorithm starting from the simplest case in which
both the layout domain and the rooms are rectangles (Fig. 4 left).
Next, we introduce five high-level constraints abstracted from real
floorplans to generate more realistic layouts. Finally, we introduce
a hierarchical framework for more complicated layout generation
in which the layout domain and rooms are polygons (Fig. 4 right).

5.1. Basic Formulation

Our goal is to create a valid layout that covers the whole domain.
We consider the layout to be valid if it satisfies two basic con-
straints: the inside constraint, which ensures that all rooms are in-
side the boundary, and the non-overlap constraint, which ensures
that there is no overlap between rooms.

Inside constraint, Cinside. In a valid layout, we require that all
rooms are inside the layout domain. Since the domain and rooms
are all rectangles, the constraint requires that four corners of each

rectangle are inside of the bounding box of the domain. The con-
straint is expressed as

0 ≤ xi ≤ w
0 ≤ yi ≤ d

xi +wi ≤ w
yi +di ≤ d,

(1)

where 1 ≤ i ≤ N, N is the number of rooms, and w and d are the
width and depth of the bounding box of the domain, respectively.
For the case of a polygonal domain, we update the inside constraint
in Section 5.3.

Non-overlap constraint, Coverlap. We require that there is no
overlap between any pair of rooms. There are four kinds of re-
lationship between two rectangular rooms, i.e., room i is on the
front/back/left/right side of room j. The difficulty of setting this
constraint is that we have no prior knowledge of which case it is.
We introduce an auxiliary binary variable, σ

d
i, j, into our problem

for each pair of rooms (i, j) to select the relationship automatically,
where d ∈ { f ront,back, le f t,right}, and σ

d
i, j = 1 means that the

relationship d of room i and room j is selected. The non-overlap
constraint is then defined as

xi−w j ≥ x j−M · (1−σ
R
i, j)

xi +wi ≤ x j +M · (1−σ
L
i, j)

yi−d j ≥ y j−M · (1−σ
F
i, j)

yi +di ≤ y j +M · (1−σ
B
i, j)

∑
4
d=1 σ

d
i, j ≥ 1,

(2)

where M is a large constant to ensure that there is no overlap be-
tween room i and room j in direction d when σ

d
i, j = 1, and the

inequality is always established when σ
d
i, j = 0. In our implementa-

tion, we set M = w+d. The last inequality ensures that at least one
of the above cases should be satisfied. Note that the introduced aux-
iliary binary variables, σ

d
i, j , encode the relationship between room i

and room j in the constraint, and they are assigned automatically
during the optimization. This method is also used in the following
constraints.

Objective function. We evaluate valid layouts that satisfy the
two basic constraints, Cinside and Coverlap, based on an energy func-
tion that prefers layouts that cover the domain as much as possible.
The energy function is defined as

Ecover(L) = Area(L)−∑
i

wi×di, (3)

where Area(·) is the area operator. Minimizing Eq. 3 under the two
basic constraints, Cinside and Coverlap, yields a mixed integer pro-
gram with a quadratic objective function (MIQP) and linear con-
straints,

min
L

Ecover(L). (4)

Fig. 4 left shows a layout generated by the basic formulation.

5.2. Optional High-level Constraints

We model five optional high-level constraints that are essential to
interior building layout generation.

Size control. The size of each room can be controlled by two

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

approaches: adding size range constraints for rooms and specify-
ing target sizes for rooms. The range of the room size can be con-
strained by providing the minimum and maximum values of wi and
di. Then, the size range constraint, Csize, is defined as{

wi ≤ wi ≤ wi
di ≤ di ≤ di,

(5)

where (wi,di) and (wi,di) are the minimum and maximum sizes
of room i, respectively. The user can also specify target sizes for
rooms. Then, the size error of rooms can be evaluated by a size
error term, which is defined as

Esize = ∑
i
(wi−w∗i)

2 +(di−d∗i)
2, (6)

where (w∗i ,d
∗
i) is the target size of room i. We can encourage room

sizes to become close to the user-specified values by adding Esize
to the objective function.

Aspect ratio constraint, Cratio. We provide a room aspect ratio
constraint, Cratio, to avoid generating rooms that are too wide or too
narrow. Similar to Coverlap, we add an auxiliary binary variable for
each room to adjust the orientation (i.e., horizontal and vertical) of
the room rectangle. The aspect ratio constraint is defined as

ri ·di ≤ wi +M ·σi
ri ·di ≥ wi−M ·σi
ri ·wi ≤ di +M · (1−σi)
ri ·wi ≥ di−M · (1−σi),

(7)

where (ri,ri) are the minimum and maximum aspect ratios between
wi and di of room i, and ri ≥ 1. σi = 0 means that room i is a
horizontal room and its aspect ratio is in the range of [ri,ri]. σi = 1
means that room i is a vertical room.

Position constraint, Cpos. During the design process, sometimes
the designer has to specify the approximate position for a room,
e.g., the foyer should connect to the main door. A guide position
for a room is presented as a single point (x∗,y∗) or two points. For
each point, the position constraint requires the room to cover the
point: {

xi ≤ x∗ ≤ xi +wi
yi ≤ y∗ ≤ yi +di.

(8)

Boundary constraint, Cboundary. Sun exposure is an important
planning criterion. For example, people typically have a preference
between the master bedroom receiving light in the morning (facing
east) or not receiving light in the morning (facing west). To ful-
fill these types of constraints, we add a boundary constraint that
requires the room to be adjacent to at least one of a set of user-
specified edges of the domain polygon. We introduce a binary vari-
able, ρk(k = 1,2, ..,n), for edge k where n is the number of edges of
the domain polygon, and ρk = 1 indicates that the room is adjacent
to edge k. For each candidate edge in the given set, we formulate
the constraint to check if the edge covers the corresponding edge of
the room. Suppose that the edge is a bottom edge. It is then defined
as [(x1,y),(x2,y)] (i.e., a horizontal edge on the bottom side of the
domain polygon), Fig. 5 left illustrates the constraint for room i,

(x1 , y) (x2 , y)edge k

(xi , yi) (xi +wi , yi)

Boundary constraint

(xi , yi)
i

c

wj

dj

j

c

(xj +c, yj)

(xi +wi, yi+di)

Adjacency constraint

(xj +wj-c, yj+dj)

Figure 5: Left: an example of a boundary constraint that requires
the room to be adjacent to the bottom edge, k, of the layout do-
main (black). Two extreme positions for room i (blue) are shown.
Right: an example of an adjacency constraint that requires room i
(green) and room j (blue) to be vertically connected. Four extreme
positions for room j are shown. To ensure sufficient connection,
we require the minimum length of the common edge between two
connected rooms to be c.

and it is expressed as
yi ≤ y+M · (1−ρk)
xi ≤ x2−wi +M · (1−ρk)
xi ≥ x1−M · (1−ρk)

∑k=1 ρk ≥ 1,

(9)

where the last inequality signifies that at least one of the candi-
date edges should be selected. There are two differences between
Cboundary and Cpos. First, Cpos requires the room to cover the speci-
fied positions, while Cboundary requires the room to select one edge
from a candidate set. Second, the candidate edge is always on the
boundary of the layout domain, but users can specify any position
for constraint, Cpos.

Adjacency constraint, Cad j. The user can also specify two
rooms to be adjacent, e.g., the master bedroom is connected to
the living room. Suppose that room i (xi,yi,wi,di) and room j
(x j,y j,w j,d j) should be connected. The idea for modeling this con-
straint is to force the two rooms to overlap. In combination with
the non-overlap constraint, Coverlap, that forbids the inside of the
rooms to overlap, this will force the overlap to happen only at the
boundary of the rooms. This is not sufficient, however, because
we would also like to ensure that there is a minimum overlap, c,
called the contact length, of the common edge between the two
connected rooms. The contact length is important to ensure that
there is enough space for adding a door between the two rooms.
The constraint can be written as

xi ≤ x j +w j− c ·θi, j
xi +wi ≥ x j + c ·θi, j

yi ≤ y j +d j− c · (1−θi, j)
yi +di ≥ y j + c · (1−θi, j),

(10)

where θi, j is a binary variable that determines the connection di-
rection automatically. θi, j = 1 denotes a vertical connection and
otherwise a horizontal connection. Fig. 5 right illustrates the con-
straint for a vertical connection. We extend the constraint to allow
room i to connect either room j, room k or both. Then the constraint

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

Vertical split Horizontal split

i2

i1
i

(xi , yi)
i1 i2

(xi - , yi-)

(xi , yi)

(xi +wi, yi+di)

(xi +wi+ , yi+di+)

Figure 6: Room decomposition in a hierarchical framework. Given
a rectangular room in the sub-domain, we decompose it into two
small rectangular rooms with the same size in a random direction,
i.e., a vertical split or a horizontal split.

is expressed as

xi +wi ≥ x j + c ·θi, j−M ·σi, j,k
xi ≤ x j +w j− c ·θi, j +M ·σi, j,k
yi ≤ y j +d j− c · (1−θi, j)+M ·σi, j,k

yi +di ≥ y j + c · (1−θi, j)−M ·σi, j,k
xi +wi ≥ xk + c ·θi,k−M · (1−σi, j,k)

xi ≤ xk +wk− c ·θi,k +M · (1−σi, j,k)
yi ≤ yk +dk− c · (1−θi,k)+M · (1−σi, j,k)

yi +di ≥ yk + c · (1−θi,k)−M · (1−σi, j,k),

(11)

where σi, j,k is a binary variable, σi, j,k = 0 means that room i is
connected to room j; otherwise room i is connected to room k.

Extended objective function. The final IP problem is defined as

min
L,σ,θ,ρ

λcoverEcover(L)+λsizeEsize(L), (12)

subject to the set of linear constraints expressed above, L =
{(xi,yi,wi,di)} are rectangular room tuples. σ, θ, and ρ are aux-
iliary binary variables selected automatically. λcover and λsize are
weights that control the trade-off between the coverage term,
Ecover, and the size error term, Esize. In our implementation, we set
λcover = λsize = 1. Please note that since both the coverage term,
Ecover, and the size error term, Esize, are quadratic terms, Eq. 12 is
a mixed integer quadratic problem.

5.3. Hierarchical Framework

In this section, we propose a hierarchical framework to extend the
basic method to improve the details of each polygonal room and to
generate large-scale layouts efficiently. There are five main compo-
nents for layout generation in each level. Fig. 7 shows the pipeline
of our hierarchical framework.

Polygonal layout domain representation. We describe a polyg-
onal layout domain by a set of rectangles, i.e., by the bounding box
subtracted by special rectangles labeled as obstacle, which means
that they cannot be covered by any room. All rectangular rooms
labeled as obstacle are retained during the following process.

Sub-domain selection. Once we obtain a layout, we can select
a sub-domain for further refinement. A sub-domain is also a lay-
out domain that is presented as a polygon, and it consists of a set
of rectangular rooms generated during the previous optimization.

The sub-domain is selected automatically by the following strate-
gies. First, if the layout domain is not completely covered by rooms
generated in the previous layout, then we select the polygon with
rectangular rooms that surround the empty region. Second, if the
size error of a rectangular room is larger than a threshold, then we
select the polygon with that room and its neighboring rooms as the
sub-domain. Moreover, the sub-domain can also be specified by the
user.

Initialization by room decomposition. We initialize the layout
optimization by decomposing rooms in the sub-domain. Given a
rectangular room in the sub-domain, we decompose it into two
small rectangular rooms of the same size in a random direction
(see Fig. 6). Each small rectangular room inherits the label from
its parent.

Constraints update. Given the new layout domain and initial-
ized rooms inside the domain, we set the constraints for the new
MIQP optimization as follows. First, we update the inside con-
straint, Cinside, and the non-overlap constraints, Coverlap, using the
new layout domain and rectangular rooms. For a polygonal domain,
the inside constraint for each room rectangle is presented by two
parts: first, the rectangle should be inside the bounding box of the
domain; second, the rectangle cannot cover any obstacle. Second,
for the original room with position constraint, Cpos, we set the new
position constraint for its child, which has to cover the position
guidance and leave the position constrain free for the other child.
We update the boundary constraint, Cboundary, in the same manner.
Third, an additional room adjacency constraint for two child rooms
is added to keep them connected in the final layout. Fourth, we add
a size refinement constraint, Cre f ine, for each child room (i.e., ri1
and ri2) to replace the size constraints on their parent room, ri. The
idea of Cre f ine is that we can restrict size changes of each child
room in a small refinement range, δ, to avoid significant changes in
the final layout. Suppose a vertical split is applied in the previous
step (see Fig. 6 middle). Then, the refinement constraint is defined
as

xi1 ≥ xi−δ

xi1 ≤ xi
yi1 ≥ yi−δ

yi1 ≤ yi
yi1 +di1 ≥ yi +di
yi1 +di1 ≤ yi +di +δ

xi2 +wi2 ≥ xi +wi
xi2 +wi2 ≤ xi +wi +δ

yi2 ≥ yi−δ

yi2 ≤ yi
yi2 +di2 ≥ yi +di
yi2 +di2 ≤ yi +di +δ,

(13)

where (xi1,yi1,wi1,di1) are parameters of child room i1,
(xi2,yi2,wi2,di2) are parameters of child room i2, and δ is the re-
finement range. The refinement constraint for the horizontal split is
presented in the supplementary material.

Optimization. We formulate the objective function as Eq. 12
subject to the updated constraints for the sub-domain. The gener-
ated layout will replace the original rectangular rooms in the sub-
domain. If there are several sub-domains, we apply the same pro-
cedure to all of them sequentially. We move to the next level when

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

Final ResultIntermediate Result Sub-domain SelectionInput Layout Domain
Initialization &

Constraints Update Intermediate Result

Kitchen
1.75 x 2.50

S.Room
1.75 x 2.25

Study
2.50 x 2.00Corridor

1.25 x 2.00

Living
3.75 x 2.75

Dining
2.25 x 2.50

Bedroom
3.25 x 2.00

M. Bedroom
2.25 x 3.25

M. Bedroom
2.25 x 3.25

Bedroom
3.25 x 2.00

Corridor
1.25 x 2.00

Study
2.50 x 2.00

Living
3.75 x 2.75

Dining
2.25 x 2.50

Kitchen
1.75 x 2.50

S.Room
1.75 x 2.25

M. Bedroom
2.25 x 3.25

Bedroom
3.25 x 2.00

Corridor
1.25 x 2.00

Study
2.50 x 2.00

Living
3.75 x 2.75

M. Bedroom
2.25 x 3.25

Bedroom
3.25 x 2.00

Corridor
1.25 x 2.00

Study
2.50 x 2.00

Living
3.75 x 2.75

M. Bedroom
2.25 x 3.25

Bedroom
3.25 x 2.00

Corridor
1.25 x 2.00

Study
2.50 x 2.00

Living
3.75 x 2.75

S. Room
1.75 x 2.25

S. Room
1.75 x 2.25

Dining
2.25 x 2.25

Dining
2.25 x 2.25

Kitchen
2.00 x 2.75

Kitchen
2.00 x 2.75

(a) (b) (c) (d) (e) (f)

Obstacle

Obstacle

Figure 7: Pipeline of the hierarchical framework. (a) Starting from the empty layout domain with the door position and two obstacles, our
method generates (b) an interior layout on the first level according to the user-specified high-level constraints. There is a region (shown
in red) that is not covered by any room. (c) Our algorithm automatically selects the sub-domain (highlighted as the red polygon) for the
optimization on the next level. (d) Then, the sub-domain is initialized with small rectangles and constraints are updated. (e) The new layout
is generated in the sub-domain (i.e.,red polygon). The user specifies the study room (blue rectangle) for further improvement. (f) The final
result.

all sub-domains are optimized. Starting from an empty layout do-
main, we generate the layout design in a coarse-to-fine manner by
the proposed hierarchical framework. We terminate the hierarchi-
cal optimization when the layout domain is completely covered and
the size error of each room is smaller than the threshold. To obtain
the final interior layout, which is represented by polygonal rooms,
we merge rectangular rooms with the same label.

Large-scale layout generation. We apply a hierarchical frame-
work for large-scale layout generation. Fig. 8 shows an example of
a shopping mall that is generated with four levels. In practice, the
large-scale layouts can be decomposed into regions and rooms in
each region. Our idea is to generate the layout for regions first, then
generate the layout inside each region. Given the layout domain and
constraints for regions, we apply the hierarchical framework to gen-
erate the layout for regions. The polygonal regions are generated in
a coarse-to-fine manner by the aforementioned framework. Then,
aisles are generated by expanding the gap between two regions with
a fixed width if needed. Next, we set each region as a sub-domain
and assign constraints for each sub-domain. The number of rooms
in each sub-domain and high-level constraints for them are speci-
fied by the user. Then, we formulate the objective function for each
sub-domain and generate the corresponding layouts. We repeat this
procedure to get the final layout. Fig. 1(b) shows another example
of a layout of an office building.

5.4. Implementation Details

We implement our algorithm in C++ using Gurobi [GO16] to solve
the MIQP problem. As it is difficult to find a globally optimal solu-
tion, we also accept sub-optimal solutions that fulfill all constraints
computed within reasonable time limits.

Users can set some of the high-level constraints on a subset of
rooms or on all of them. Since modeling realistic constraints is
a challenging task, we also provide an option for automatic con-
straint modeling for residential buildings. We collect 200 floorplans
of residential buildings and learn the size constraints and adjacency
constraints. We first train polynomial regression models for width
and depth of each kind of room with respect to the square root of
the domain area. Given a new domain, the range of the width and

depth of each room are set as the range of the 90% confidence band
of the corresponding model. We also collect connectivity informa-
tion from the data to randomly sample a useful set of adjacency
constraints. For convenience, we formulate all the constraints and
objective functions as templates and design a semi-automatic sys-
tem for specifying constraints. For example, a user can specify a
room type and a constraint type and then our system generates all
constraint details automatically. For a moderate layout (15 rooms
with 50 constraints), the user usually requires 2-5 minutes to set all
constraints.

The performance of synthesizing a good layout is related to the
size constraints of rooms. In practice, we apply several optimization
strategies for acceleration. If target sizes of rooms are given, we
apply a heuristic to set up the minimum and maximum sizes for
specified rooms to help Gurobi quickly find the feasible solution.
We first set 90% and 110% of the target value as the minimum and
maximum size, respectively. Then, we gradually relax the size of
the constraints by 10% until Gurobi finds a feasible solution within
reasonable time limits. For a task that has 20 rooms or less, we set
the time for accepting sub-optimal solutions to 5 seconds. The time
increases proportionally with the number of rooms in complicated
tasks.

We also apply a heuristic to add doors and windows. A door
is added between two rooms that are assigned an adjacency con-
straint. For a residential building, we define the door policy in ad-
vance and apply it to the generated layout. Windows are evenly dis-
tributed on the outside walls. Furniture is placed manually. Fig. 10
shows an example of generated layouts with assets and the corre-
sponding three-dimensional model is also shown.

6. Results and Applications

All of our experiments are performed on a laptop with dual 2.9 GHz
Intel Core i5 processors and 8 GB main memory.

Interior layout for residential buildings. First, we apply our
method to an apartment layout design. The layout domain, the
number of rooms and the functionality of each room are given. In
Fig. 9, we show two interior layouts designed by our algorithm with
the same layout domain and constraints. Boundary constraints are

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 8: An interior layout of a shopping mall is generated by our hierarchical framework. (a) Starting from an empty layout domain with
obstacles. (b) First, we generate the layouts for five regions shown in different colors. (c) Then aisles are generated by expanding the gap
between two regions with a fixed width. (d) Next, we generate the layouts inside each region. (e-h) We repeat this procedure to get (i) the final
layout. The number of objects (regions and rooms) and constraints on each level are specified by the user.

 Layout 1 Layout 2
Study

1.75 x 3.25

Kitchen
2.75 x 1.50

Living
2.50 x 3.75

Dining
3.00 x 1.75

S. Room
2.25 x 1.50

M. Bedroom
2.75 x 3.00

Bedroom1
2.00 x 3.25 Bedroom2

2.50 x 2.00

S. Room
2.00 x 1.75

Kitchen
2.50 x 1.75

M. Bedroom
3.50 x 3.00

Living
4.00 x 3.00

Dining
3.00 x 1.75

Bedroom1
2.50 x 3.25 Bedroom2

2.25 x 2.75

N

Figure 9: Two apartment layouts are generated by our algorithm
with the same input. Boundary constraints are added for bedrooms
to ensure that all bedrooms receive sufficient sunshine from the
south east direction. The north direction is shown.

Study
2.75 x 1.75

Bedroom2
3.25 x 2.50

Bedroom1
3.25 x 1.75Living

3.50 x 2.75

M. Bedroom
3.50 x 2.25Dining

2.25 x 1.75
S. Room
1.75 x 1.50

Kitchen
1.50 x 2.75

Figure 10: An interior layout of a bungalow-style house generated
by our algorithm. The floorplan is shown in the middle. Two sides
of the 3D rendering are shown.

added for bedrooms to ensure that all bedrooms receive sufficient
sunshine from the south-east direction. Fig. 10 shows a layout gen-
erated for a bungalow-style house. Our method can be extended to
design layouts for a multi-storey house by taking the stairs (or el-
evator) as a special room that should be consistent on every floor.
Fig. 11 shows the layout of a two-storey house. The supplementary
materials present more results.

Evaluation of our method. First, we evaluate our approach
by reproducing interior layouts of buildings. A good layout al-
gorithm should reproduce reasonable results from constraints ex-

1st floor 2nd floor

Bedroom1
3.85 x 2.45

M. Bedroom
4.90 x 5.25

Corridor

Living
4.90 x 3.15

Dining
2.10 x 3.50

Kitchen
2.10 x 3.50

Foyer
2.10 x 3.50

Corridor
3.85 x 1.75

Garage

Figure 11: An interior layout of a two-storey house. The stairs are
considered as special rooms that should be consistent between two
floors. The floorplan of each floor is shown on the left, 3D render-
ings are shown on the right.

Bedroom2
3.50 x 3.25

Bedroom1
3.75 x 2.45

Living Room
4.75 x 3.45

Master

3.00 x 2.75
Bedroom

Dining

2.00 x 2.75
Room1.50 x 2.75

Kitchen

3.35 x 3.35 3.35 x 3.05

3.35 x 2.74

3.35 x 3.05

3.96 x 4.87

Figure 12: Regeneration of a layout according to the constraints
extracted from a given layout. Left: the ground-truth layout. Right:
an interior layout regenerated from the size and adjacency con-
straints extracted from the left layout.

tracted from real designs. We extract only size and room adjacency
constraints from the given design shown in Fig. 12 left. A regener-
ated layout is shown in Fig. 12 right. We find that all connectivities
are maintained and that the size error of each room is small. Second,
we perform a comparison between layouts generated by the basic
method and by our hierarchical approach with the same layout do-
main and high-level constraints. Since the basic approach only tiles
rectangles on one level, there are some small regions remaining
(see Fig. 13 left). In contrast, our hierarchical approach can gen-
erate a layout that completely covers the whole domain. Third, we

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

S. Room
2.10 x 2.80

Kitchen
3.50 x 1.75 M.Bedroom

2.45 x 3.85

Foyer
3.50 x 3.50

Dining
3.15 x 1.75

Bedroom1
2.80 x 3.50

Bedroom2
2.80 x 2.10

Study
2.10 x 2.10

Corridor
4.90 x 1.05

Living
3.15 x 3.50

Living
3.50 x 3.50

Kitchen
3.50 x 1.75

S. Room
2.10 x 3.15

Bedroom1
2.80 x 3.50

Foyer
3.50 x 3.50

Dining
3.15 x 1.75

Bedroom2
2.80 x 2.10

Study
2.10 x 2.10

Corridor
4.90 x 1.05

M.Bedroom
2.45 x 4.20

Figure 13: Given the same input, we perform a comparison be-
tween our basic method and our hierarchical approach. Left: the
layout generated by our basic method. Regions that are not covered
are highlighted in red. Right: the layout generated by the hierarchi-
cal approach.

Time (sec.)

Fig. 1 (a) 13 13,13,2,1,3,8 40 7.26

Fig. 1 (b) 154 154,154,0,0,0,0 308 85.69

Fig. 2 5 5,5,0,0,1,4 15 0.13

Fig. 4 (a) 5 5,5,0,1,3,4 18 0.16

Fig. 4 (b) 15 15,15,2,1,7,14 54 11.31

Fig. 7 14 14,14,1,1,6,13 49 18.17

Fig. 8 140 140,140,0,6,0,0 286 78.63

Fig. 9 left 15 15,15,2,1,7,14 54 16.17

Fig. 9 right 15 15,15,2,1,7,14 54 11.09

Fig. 10 15 15,15,2,1,7,14 54 17.95

Fig. 11 13 13,13,2,1,2,6 37 1.52

Fig. 12 13 13,13,2,1,5,11 45 10.44

Fig. 13 left 15 15,15,2,1,7,14 54 10.69

Fig. 13 right 15 15,15,2,1,7,14 54 10.72

Fig. 15 left 119 119,119,0,6,0,0 244 67.14

Fig. 15 right 95 95,95,0,0,0,0 190 53.57

Fig. 16 left 111 111,111,0,1,0,0 223 61.75

Fig. 16 right 154 154,154,0,0,0,0 208 86.88

Figure #Room #Constraints Total

Table 1: For each example shown in the paper, we present the num-
ber of rooms, the number of each kind of constraint, the number of
total constraints, and running time. In the third column, the num-
bers of Csize, Coverlap, Cratio, Cpos, Cboundary, and Cad j constraints
are given.

evaluate the effect of each constraint by performing leave-one-out
tests. Fig. 14 shows the effect of each constraint. We can see that
the kitchen size is unreasonable if the size error term is excluded.
Without the aspect ratio constraint, the kitchen is too narrow. The
foyer is not connected to the main door without the position con-
straint. When the boundary constraint for the kitchen is excluded,
the kitchen is not adjacent to the boundary of the house, which is
not good for emission of kitchen exhaust. When the room adja-
cency constraints are excluded, there is no pathway to other rooms
except the study. The performance of our algorithm is shown in Ta-
ble 1. In our experiments, our algorithm can generate a mid-size
layout in 15 seconds on average.

We also evaluate our method on large-scale examples, e.g.,

rooms in an office building, booths in a shopping mall, and shelves
in a supermarket. Fig. 15 shows two layouts of office buildings gen-
erated by our algorithm. In Fig. 16, two layouts of supermarkets are
shown.

Comparison with other methods. For comparison, we imple-
mented a stochastic optimization algorithm, i.e., the non-parallel
version of [MSK10]. In the initialization step, we add rectangular
rooms with the same size to the layout domain. The approach it-
eratively performs one of the following operations randomly: (1)
swapping rooms or (2) sliding a wall. We evaluate the proposed
layout by the objective value E. If E is smaller than the objective
value of previous layout E, we always accept the layout; otherwise,
we accept it with the probability of exp(−E′−E)/t, where t is the
temperature. We gradually reduce the temperature t in each itera-
tion. The algorithm terminates when E is smaller than a threshold.
Fig. 18 shows the performance of the two methods on different
complexities of the problem, where the complexity of the problem
is defined as the sum of the number of rooms and the number of
specified constraints. As the complexity of the input increases, the
running time of the stochastic method increases significantly, while
the running time of our method increases slowly. When the sum of
the number of rooms and the number of constraints is larger than
50, the stochastic method takes more than two hours. To illustrate
the problem, Fig. 17 left shows a layout generated by our algo-
rithm, while Fig. 17 right shows a layout generated by the stochas-
tic method that took 10 times longer to generate than our method
took. At this point in time, the stochastic method has still not found
a feasible solution that fulfills all constraints. We find that there is
an uncovered region and several rooms are too small for furniture.

Limitations. The main limitation of our method is that we can-
not currently handle non axis-aligned polygons. One possible ap-
proach to overcome this limitation is to apply shape deformations
to generate rooms in arbitrary shapes.

7. Conclusions

In this paper, we propose a novel method for interior layout design.
We formulate the problem using mixed integer quadratic program-
ming. We propose a parametric layout representation suitable for
this optimization framework and derive how to model five impor-
tant high-level constraints for layout modeling as linear constraints.
We propose a hierarchical framework to generate complicated lay-
outs in a coarse-to-fine manner. We demonstrate that our method
is faster by multiple orders of magnitude than previous work us-
ing stochastic optimization. Our work can generate a wide variety
of layouts, such as residential buildings, exhibitions, supermarkets,
department stores, etc. In future work, we would like to extend our
method to other layout design problems, e.g., warehouses, game
layouts, and electrical layouts. We also would like to extend our
hierarchical framework to large-scale urban planning. It would also
be interesting to integrate the idea of network design to generate
layouts that satisfy both shape and network constraints.

Acknowledgment

This work was supported by the KAUST Office of Sponsored Re-
search (OSR) under Award No. OCRF-2014-CGR3-62140401, and

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

(a) all included size error aspect ratio position (e) boundary (f) adjacency
term excluded

(b) (c)
constraint excluded

(d)
constraint excluded constraint excluded constraint excluded

Bedroom2
Study

M. Bedroom

Living Room

Foyer Corridor

S.Room
Kitchen

Dining
Room

Bedroom1

Foyer Study

Living
Room

Dining
Room

Bedroom
2

Bedroom
1

Bedroom
M.

Corridor

Kitchen

S.Room

Foyer Corridor

Study Bedroom2
S.Room

Kitchen

Dining
Room

M. Bedroom Living Room

Bedroom1

Study

Foyer

Bedroom1
M. Bedroom

Corridor

Bedroom2

Living
Room

Dining
Room

Kitchen
S.Room

Foyer Foyer

Study

Study

Corridor

Living Room

Bedroom1

Bedroom2

Dining
Room

Kitchen

S.Room

M. Bedroom

Bedroom1

M. BedroomDining
Room

KitchenS.RoomLiving Room

Bedroom2

C
or

rid
or

Foyer

Study

Bedroom2

S.Room

Kitchen

Dining
Room

Living RoomM. Bedroom

Corridor

Bedroom1

Figure 14: The effect of each constraints. (a) We extract the attributes from a real layout design. (b-f) Ablation of individual constraints and
the effect on the results. The unreasonable part of each layout is highlighted.

0 5m

Figure 15: Interior layouts of office buildings generated by our
method. Polygons in the same color are from the same parent rect-
angle in a higher level.

0 5m cashier

Figure 16: Interior layouts of supermarkets generated by our
method. Shelves for products in the same category are in the same
color.

Ours Stochastic Method

Study
3.40 x 4.50

M. Bedroom
3.75 x 2.25

Bedroom1
5.25 x 4.50

Bedroom2
4.90 x 3.00

Living
3.40 x 4.15

Kitchen
1.90 x 3.75

Dining
3.00 x 1.50

S. Room
1.50 x 2.25

Study
3.40 x 2.65

M. Bedroom
4.15 x 2.65

Bedroom2
4.50 x 2.25

Living
3.75 x 5.65

Kitchen
3.75 x 3.00

Dining
1.90 x 3.40

S. Room
2.25 x 2.65

Bedroom1
2.65 x 5.65

Figure 17: Given the same input (i.e., the layout domain and
constraints), layouts generated by our method and the stochastic
method are shown. The stochastic method took 10 times longer than
our method. The empty region is highlighted in red, and rooms that
are too small for furniture are highlighted in yellow.

1.1
9.5

17.2 20.3 22.2 28 29.9

7.1 13.3
19.8

37.8
57.4

211.2

0

50

100

150

200

250

10 17 21 27 33 41 54

R
u
n
n
in
g
ti
m
e
 (
se
c.
)

Complexity

Ours

Stochastic Method

Figure 18: Performance comparison between the stochastic
method and our algorithm. For the stochastic method, the running
time increases significantly when the complexity (i.e., the sum of
the number of rooms and the number of constraints) of the problem
increases, while the running time of our approach increases slowly.
The running time of the stochastic method for the last experiment
is longer than 2 hours. We terminated it before obtaining a result.

the Visual Computing Center at KAUST. Ligang Liu is supported
by the National Natural Science Foundation of China (61672482,
61672481, 11626253) and the One Hundred Talent Project of the
Chinese Academy of Sciences. We would like to thank Virginia
Unkefer for proofreading the paper.

References

[Ali12] ALIAGA D. G.: 3D design and modeling of smart cities from a
computer graphics perspective. ISRN Computer Graphics 2012 (2012).
3

[AVB08] ALIAGA D. G., VANEGAS C. A., BENES B.: Interactive
example-based urban layout synthesis. In ACM transactions on graphics
(TOG) (2008), vol. 27, ACM, p. 160. 3

[BBM∗17] BAHREHMAND A., BATARD T., MARQUES R., EVANS A.,
BLAT J.: Optimizing layout using spatial quality metrics and user pref-
erences. Graphical Models (2017). 2

[BF91] BAYKAN C. A., FOX M. S.: Constraint satisfaction techniques
for spatial planning. In Intelligent CAD Systems III. Springer, 1991,
pp. 187–204. 2

[BYMW] BAO F., YAN D.-M., MITRA N. J., WONKA P.: Generating
and exploring good building layouts. 3

[CC06] CHEN T.-C., CHANG Y.-W.: Modern floorplanning based on
b*-tree and fast simulated annealing. IEEE Transactions on Computer-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Wu et al. / MIQP-based Layout Design for Building Interiors

Aided Design of Integrated Circuits and Systems 25, 4 (2006), 637–650.
2

[CEW∗08] CHEN G., ESCH G., WONKA P., MÜLLER P., ZHANG E.:
Interactive procedural street modeling. In ACM transactions on graphics
(TOG) (2008), vol. 27, ACM, p. 103. 3

[CGC10] CHEN G., GUO W., CHEN Y.: A pso-based intelligent decision
algorithm for vlsi floorplanning. Soft Computing 14, 12 (2010), 1329–
1337. 2

[CZ10] CHEN J., ZHU W.: A hybrid genetic algorithm for vlsi floor-
planning. In Intelligent Computing and Intelligent Systems (ICIS), 2010
IEEE International Conference on (2010), vol. 2, IEEE, pp. 128–132. 2

[DB08] DONATH D., BÖHME L. F. G.: Constraint-based design in par-
ticipatory housing planning. International Journal of architectural com-
puting 6, 1 (2008), 97–117. 2

[Dou07] DOULGERAKIS A.: Genetic and embryology in layout planning.
Master of Science in Adaptive Architecture and Computation, University
of London (2007). 2

[DRCMPI07] DEL RÍO-CIDONCHA G., MARTÍNEZ-PALACIOS J.,
IGLESIAS J. E.: A multidisciplinary model for floorplan design. In-
ternational journal of production research 45, 15 (2007), 3457–3476.
2

[Dua05] DUARTE J. P.: A discursive grammar for customizing mass
housing: the case of siza’s houses at malagueira. Automation in con-
struction 14, 2 (2005), 265–275. 2

[DZH∗02] DONG S., ZHOU S., HONG X., CHENG C., GU J., CAI Y.:
An optimum placement search algorithm based on extended corner block
list. Journal of Computer Science and Technology 17, 6 (2002), 699–707.
2

[EF99] ELEZKURTAJ T., FRANCK G.: Genetic algorithms in support
of creative architectural design. EUROPEAN COMPUTER AIDED AR-
CHITECTURAL DESIGN AND EDUCATION 17 (1999), 645–651. 2

[FUC∗88] FLEMMING, ULRICH, COYNE, GLAVIN R. F., TIMOTHY J.:
A generative expert system for the design of building layouts – version
2. Cad and Robotics in Architecture and Construction (1988), 75–81. 2

[FYY∗16] FENG T., YU L.-F., YEUNG S.-K., YIN K., ZHOU K.:
Crowd-driven mid-scale layout design. ACM Trans. Graph. 35, 4 (2016),
132–1. 3

[GO16] GUROBI OPTIMIZATION I.: Gurobi optimizer reference manual,
2016. URL: http://www.gurobi.com. 7

[Hsu00] HSU Y.-C.: Constraint based space planning: A case study.
ACADIA Quarterly 19, 3 (2000), 2–3. 2

[Hua16] HUA H.: Irregular architectural layout synthesis with graphical
inputs. Automation in Construction 72 (2016), 388–396. 3

[HWB95] HARADA M., WITKIN A., BARAFF D.: Interactive
physically-based manipulation of discrete/continuous models. In Pro-
ceedings of the 22nd annual conference on Computer graphics and in-
teractive techniques (1995), ACM, pp. 199–208. 2

[KF00] KIYOTA K., FUJIYOSHI K.: Simulated annealing search through
general structure floorplans using sequence-pair. In Circuits and Sys-
tems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE Interna-
tional Symposium on (2000), vol. 3, IEEE, pp. 77–80. 2

[KS05] KEATRUANGKAMALA K., SINAPIROMSARAM K.: Opti-
mizing architectural layout via mixed integer programming. In CAAD
FUTURES (2005), vol. 11, pp. 175–184. 2

[LC04] LIN J.-M., CHANG Y.-W.: Tcg-s: orthogonal coupling of
p/sup*/-admissible representations for general floorplans. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
23, 6 (2004), 968–980. 2

[LFT00] LI S.-P., FRAZER J., TANG M.-X.: A constraint based genera-
tive system for floor layouts. 2

[LHP11] LEBLANC L., HOULE J., POULIN P.: Component-based mod-
eling of complete buildings. In Proceedings of Graphics Interface 2011

(2011), Canadian Human-Computer Communications Society, pp. 87–
94. 2

[LWKF17] LIU C., WU J., KOHLI P., FURUKAWA Y.: Raster-to-vector:
Revisiting floorplan transformation. In International Conference on
Computer Vision (ICCV) (2017). 3

[LYAM13] LIU H., YANG Y.-L., ALHALAWANI S., MITRA N. J.:
Constraint-aware interior layout exploration for pre-cast concrete-based
buildings. The Visual Computer 29, 6-8 (2013), 663–673. 3

[MAR07] MONI D. J., ARUMUGAM S., RANI G. N.: Vlsi floorplanning
relying on differential evolution algorithm. ICGST International Journal
on Artificial Intelligence and Machine Learning 7, 1 (2007), 62–67. 2

[MSK10] MERRELL P., SCHKUFZA E., KOLTUN V.: Computer-
generated residential building layouts. In ACM Transactions on Graphics
(TOG) (2010), vol. 29, ACM, p. 181. 1, 3, 9

[MVLS14] MA C., VINING N., LEFEBVRE S., SHEFFER A.: Game
level layout from design specification. In Computer Graphics Forum
(2014), vol. 33, Wiley Online Library, pp. 95–104. 3

[MXM09] MAO F., XU N., MA Y.: Hybrid algorithm for floorplanning
using b*-tree representation. In Intelligent Information Technology Ap-
plication, 2009. IITA 2009. Third International Symposium on (2009),
vol. 3, IEEE, pp. 228–231. 2

[NFMK97] NAKATAKE S., FUJIYOSHI K., MURATA H., KAJITANI Y.:
Module placement on bsg-structure and ic layout applications. In Pro-
ceedings of the 1996 IEEE/ACM international conference on Computer-
aided design (1997), IEEE Computer Society, pp. 484–491. 2

[Nil06] NILKAEW P.: Assistant tool for architectural layout design by
genetic algorithm. 2

[NNA06] NINOMIYA H., NUMAYAMA K., ASAI H.: Two-staged tabu
search for floorplan problem using o-tree representation. In Evolution-
ary Computation, 2006. CEC 2006. IEEE Congress on (2006), IEEE,
pp. 718–724. 2

[PYB∗16] PENG C.-H., YANG Y.-L., BAO F., FINK D., YAN D.-M.,
WONKA P., MITRA N. J.: Computational network design from func-
tional specifications. ACM Transactions on Graphics (TOG) 35, 4
(2016), 131. 3

[PYW14] PENG C.-H., YANG Y.-L., WONKA P.: Computing layouts
with deformable templates. ACM Transactions on Graphics (TOG) 33,
4 (2014), 99. 2, 3

[RCMLS96] RAU-CHAPLIN A., MACKAY-LYONS B., SPIERENBURG
P.: The lahave house project: Towards an automated architectural design
service. Cadex 96 (1996), 24–31. 2

[RSM17] ROSSER J. F., SMITH G., MORLEY J. G.: Data-driven esti-
mation of building interior plans. International Journal of Geographical
Information Science 31, 8 (2017), 1652–1674. 3

[SDD12] SINGHA T., DUTTA H., DE M.: Optimization of floor-planning
using genetic algorithm. Procedia Technology 4 (2012), 825–829. 2

[Sec12] SECHEN C.: VLSI placement and global routing using simulated
annealing, vol. 54. Springer Science & Business Media, 2012. 2

[STBB14] SMELIK R. M., TUTENEL T., BIDARRA R., BENES B.: A
survey on procedural modelling for virtual worlds. In Computer Graph-
ics Forum (2014), vol. 33, Wiley Online Library, pp. 31–50. 3

[SVW∗11] SENGUPTA D., VENERIS A., WILTON S., IVANOV A.,
SALEH R.: Sequence pair based voltage island floorplanning. In
Green Computing Conference and Workshops (IGCC), 2011 Interna-
tional (2011), IEEE, pp. 1–6. 2

[YWVW13] YANG Y.-L., WANG J., VOUGA E., WONKA P.: Urban pat-
tern: Layout design by hierarchical domain splitting. ACM Transactions
on Graphics (TOG) 32, 6 (2013), 181. 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://www.gurobi.com

