
Data-driven Interior Plan Generation for Residential Buildings

WENMING WU, University of Science and Technology of China, China
XIAO-MING FU∗, University of Science and Technology of China, China
RUI TANG, Kujiale, China
YUHAN WANG, Kujiale, China
YU-HAO QI, University of Science and Technology of China, China
LIGANG LIU∗, University of Science and Technology of China, China

We propose a novel data-driven technique for automatically and efficiently
generating floor plans for residential buildings with given boundaries. Cen-
tral to this method is a two-stage approach that imitates the human design
process by locating rooms first and then walls while adapting to the input
building boundary. Based on observations of the presence of the living room
in almost all floor plans, our designed learning network begins with position-
ing a living room and continues by iteratively generating other rooms. Then,
walls are first determined by an encoder-decoder network, and then they
are refined to vector representations using dedicated rules. To effectively
train our networks, we construct RPLAN - a manually collected large-scale
densely annotated dataset of floor plans from real residential buildings. In-
tensive experiments, including formative user studies and comparisons, are
conducted to illustrate the feasibility and efficacy of our proposed approach.
By comparing the plausibility of different floor plans, we have observed that
our method substantially outperforms existing methods, and in many cases
our floor plans are comparable to human-created ones.

CCS Concepts: • Computing methodologies → Computer graphics;
Neural networks; Probabilistic reasoning.

Additional Key Words and Phrases: floor plan generation, interior layout,
data-driven approach, neural network, deep learning

ACM Reference Format:
WenmingWu, Xiao-Ming Fu, Rui Tang, YuhanWang, Yu-Hao Qi, and Ligang
Liu. 2019. Data-driven Interior Plan Generation for Residential Buildings.
ACM Trans. Graph. 38, 6, Article 234 (November 2019), 12 pages. https:
//doi.org/10.1145/3355089.3356556

1 INTRODUCTION
Designing a floor plan is an essential part of building a dwelling,
as this plan indicates room connections, room types, room sizes,

∗The corresponding authors

Authors’ addresses: Wenming Wu, University of Science and Technology of China,
China, wwming@mail.ustc.edu.cn; Xiao-Ming Fu, University of Science and Technology
of China, China, fuxm@ustc.edu.cn; Rui Tang, Kujiale, China, ati@qunhemail.com;
YuhanWang, Kujiale, China, daishu@qunhemail.com; Yu-Hao Qi, University of Science
and Technology of China, China, qiyuhao7@mail.ustc.edu.cn; Ligang Liu, University
of Science and Technology of China, China, lgliu@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART234 $15.00
https://doi.org/10.1145/3355089.3356556

Input boundary Output floor plan

Living room

Kitchen

Second room

Master room

Bathroom

Balcony

Fig. 1. Floor plan for one residential building generated by our approach,
given a boundary as input.

and wall lengths. Generally, floor plan design is an iterative trial-
and-error and time-consuming process between interior designers,
which requires significant expertise and experience, and home users.

In this paper, we consider a different problem of automatically
designing floor plans for residential buildings, given the boundary as
input only. In computer games and networked virtual environments,
efficiently and automatically generating floor plans from a given
boundary is practical and demanded. In interior design, providing
an initial design or candidate option for house renovation with the
existing boundary is very useful.

Some techniques have been proposed for automatically generat-
ing floor plans [Hua 2016; Liu et al. 2013; Merrell et al. 2010; Wu
et al. 2018]. Most of them have considered floor plan generation
as constraint-based systems with high-level constraints, such as
room sizes, positions, and adjacencies. However, these constraints
are highly dependent on the knowledge given by the individual
designers and they may even be inconsistent in some cases. The
work of [Merrell et al. 2010] cannot maintain the input boundary.

In order to avoid enumerating all high-level constraints and im-
prove the plausibility of the generated floor plans, we aim to develop
a learning basedmethod for this task. That is, given a building bound-
ary, its floor plan is automatically learned from a dataset of real floor
plans without specifying any constraints. However, the challenges
of achieving the goal are two fold. First, a large-scale dataset consist-
ing of real floor plans with complete room annotations is expected.

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1145/3355089.3356556

234:2 • W. Wu et al.

There is no such dataset yet. Second, it is non-trivial to design a
highly individualized learning approach that can quickly generate
intuitive floor plans comparable to those designed by humans, given
only the boundary as input.

To this end, we propose a novel data-driven method to automat-
ically and efficiently generate floor plans for residential buildings
with the given boundary. First, we have built RPLAN, a large-scale
dataset containing more than 80K real floor plans from residential
buildings. Each floor plan is represented as vector graphics com-
posed of labeled rooms and walls. Then we develop a two-stage
approach to learn the floor plan based on the observation that pro-
fessionals design floor plans with two phases [Rengel 2011]: (i)
determining room connections and positions and (ii) computing
room sizes and wall positions. To predict the room locations, we
use the iterative learning method of [Ritchie et al. 2019; Wang et al.
2018] with one novel modification - a living room first strategy to
improve the plausibility of our generated floor plans. Then, given
the computed locations of the rooms, we train an encoder-decoder
network to predict the wall positions, and use customized rules to
transform a pixelated representation into a vector representation.

From numerous experiments, our method is able to learn design
rules from the dataset and has achieved better plausibility than
existing methods. User studies have shown that it has achieved
comparable floor plan results to those created by humans. Moreover,
our approach achieves a satisfactory level of efficiency of generating
one floor plan within an average of four seconds.
Our main contributions are as follows:
• We propose a novel learning method to automatically and
efficiently generate floor plans for residential buildings given
the building boundary as input only.

• To effectively train our networks, RPLAN, a large-scale dataset
containing more than 80K real floor plans from residential
buildings, is constructed with dense annotations.

To the best of our knowledge, this is the first time floor plan design
has been automated using only the boundary as constraint without
any pre-defined high-level constraints on rooms and walls. The
constructed large-scale dataset RPLAN has pretty much potential
to inspire more research.

2 RELATED WORK
Layout synthesis in computer graphics. Synthesizing layouts is an

essential topic in computer graphics and plays an important role
in many applications, such as architecture, computer games, and
vitual/augmented reality [Liggett 2000; Smelik et al. 2014]. There
are many types of layouts, such as urban layouts [Aliaga et al. 2008;
Chen et al. 2008; Peng et al. 2016, 2014; Yang et al. 2013], game
level layouts [Hendrikx et al. 2013; Ma et al. 2014], architectural
layouts [Bao et al. 2013; Harada et al. 1995; Müller et al. 2006],
interior layouts [Feng et al. 2016; Merrell et al. 2010; Wu et al. 2018],
indoor scenes [Fisher et al. 2012; Merrell et al. 2011; Wang et al.
2018; Yu et al. 2011], and page layouts [Harada et al. 1995; Li et al.
2019; O’Donovan et al. 2014]. In this paper, we focus on floor plan
generation for residential buildings.

Floor plan generation. Floor plan generation may be defined as
the process of determining the position and size of several rooms.

Due to the combinatorial complexity, evolutionary algorithms and
data-driven methods have been developed. For rectangular single-
story dwellings, Michalek et al. [2002] propose an optimization
model that is solved by combining gradient-based algorithms with
evolutionary algorithms. An enhanced hybrid evolutionary algo-
rithm is developed to generate a set of floor plans in the early
design stages of architectural practice [Rodrigues et al. 2013a,b,c].
Bahrehmand et al. [2017] use an evolutionary approach to design
an interactive layout solver. Given a small dataset with 120 architec-
tural programs [Merrell et al. 2010], they use a Bayesian network to
learn attributes of rooms and synthesize the layout using the sto-
chastic method without fixing the boundary. A data-driven method
is proposed to estimate room dimensions and orientations [Rosser
et al. 2017]. Some other methods have been proposed, such as a phys-
ically based space modeling method [Arvin and House 2002] and a
mixed integer quadratic programming (MIQP) based method [Wu
et al. 2018]. Wu et al. [2018] adopt high-level constraints as inputs
and generate building interiors based on a MIQP formulation. An
interactive system is presented to generate floor plans subject to
design, user, and manufacturing constraints [Liu et al. 2013]. A
lazy generation method is pretested to generate grid-like interior
layouts [Hahn et al. 2006]. Floor plans with irregular rooms are
automatically created [Hua 2016]. These methods do not generate
floor plans from scratch using only the given boundary as input.

Deep layout generation. Deep learning architecture holds some
promise in addressing the layout generation problem. Deep con-
volutional neural networks [Ritchie et al. 2019; Wang et al. 2018]
are used for indoor scene synthesis. LayoutGAN [Li et al. 2019] is
a novel Generative Adversarial Network that synthesizes layouts
for graphic design. A room layout is estimated from a single RGB
panorama using a deep learning framework [Yang et al. 2019; Zou
et al. 2018]. A floor plan is reconstructed from a rasterized floor plan
image [Liu et al. 2017]. RGBD streams are used to automatically
reconstruct a floor plan using a novel neural architecture, called
FloorNet [Liu et al. 2018]. We also use the deep learning approach
to generate floor plans for residential buildings, but only with the
boundary as input. Aydemir et al. [2012] provide a dataset which
contains 940 floors. There are only 870 floor plan images in [Liu et al.
2017] and 5,000 samples in [Kalervo et al. 2019]. Large-scale floor
plans can be extracted from SUNCG [Song et al. 2017] consisting
of large-scale synthetic indoor scenes; however, they are synthetic
and cannot model the complexity of real floor plans or replace real
floor plans. To this end, we propose a large-scale dataset with more
than 80K real floor plans from residential buildings.

3 OVERVIEW
Problem. Our method receives as input a building’s outer bound-

ary defined as the geometry of the exterior walls with an entrance
(Fig. 2 (a)). Our goal is to generate a desired floor plan, as a layout
of rooms and walls with room annotations (Fig. 2 (c) and (d)).

Challenges. However, there are two challenges. First, since only
the boundary is given, it is non-trivial to design a highly individu-
alized learning approach to automatically and efficiently generate
intuitive floor plans that are comparable to the human-created floor

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

Data-driven Interior Plan Generation for Residential Buildings • 234:3

(a) (b) (c) (d)

Locating rooms Locating walls

Living room
Kitchen

Study room

Master room Second room

Bathroom

Balcony

Living roomKitchen

Study room

Master room Second room

Bathroom

Balcony

Fig. 2. Overview of our method. Given an input boundary (a), our method first uses an iterative prediction model to obtain room locations (red dots in b).
Based on the this, our method further locates walls (shown in blue) to obtain a vectorized floor plan (c). In this step, our method uses an encoder-decoder
network to predict wall locations and then a post-processing step converts the floor plan into the final vector format. Additional details, including doors and
windows, are added to visualize the floor plan (d).

500

1000

2500

2000

1500

3000

0

0
1000

2000

5000
4000

3000

6000

7000
8000

25 30 35 40 45 50 55

60 70 80 90 100 110 120

(%)

(m²)

#F
lo

or
 p

la
n

#F
lo

or
 p

la
n

(a3) The proportion of the area of the living room

(a4) The total area of the floor plan

(a2)

(a1)

Bathroom 97113

SecondRoom 99987

Balcony 86545

LivingRoom 80788

MasterRoom 80466

Kitchen 77768

StudyRoom 14985

Storage 3351

Wall-in 1043

GuestRoom 860

DiningRoom 1312

ChildRoom 3928

Entrance 292

Room type #Floor plan

4 254

5 5788

6 25104

7 29278

8 20364

#Room per
floor plan #Floor plan

(a) Statistics of our dataset (b) Floor plan (c) Ground truth

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Boundary mask Inside mask

Wall mask Room mask

Fig. 3. Our dataset RPLAN. (a) Statistics on the occurrence of each room type (a1), room number per floor plan (a2), the proportion of the area of the living
room (a3), and the number of floor plan according to the total area (a4). (b) One typical floor plan in our collected dataset. (c) For each floor plan, we abstract
the necessary information used in our method, including the boundary mask (the entrance is shown in red), inside mask, (interior) wall mask, and room mask.

plans. The second challenge is that the data-driven method requires
a large amount of training data. However, there is no such a large-
scale database of floor plans from real residential buildings.

Methodology. To solve the data problem, we propose RPLAN: a
large-scale dataset with more than 80K floor plans from real residen-
tial buildings with labeled rooms and walls (Section 4). Inspired by
human artists’ creative processes, we propose a two-stage approach
to first locate rooms and then walls (Section 5). Fig. 2 shows the
workflow of our proposed two-stage method. Given the building
boundary (Fig. 2 (a)), the first stage is to predict room types and
locations with an iterative learning scheme, shown as the red dots
in Fig. 2 (b). The second is to locate walls using an encoder-decoder
network and some dedicated rules (Fig. 2 (c) and (d)).

4 DATASET OF RPLAN
We have built RPLAN, a large-scale dataset of floor plans from resi-
dential buildings with semantic annotations at the pixel level (Fig. 3).
To inspire more research, the dataset will be published later.

Data collection. We have collected more than 120K floor plans
from real-world residential buildings in the estate market in Asia.

The dataset is collected at our own expense with the user and floor
plan privacy eliminated. Hence, all floor plans in the dataset have no
copyright issue. Each floor plan has a vector-graphics representation
within a squared region of 18m × 18m, including the geometric and
semantic information as shown in Fig. 3 (b). For the sake of applying
learning scheme, we convert each floor plan into a 256 × 256 image.

Filtering. Real-world residential buildings often have some small
areas for the flue, elevator and equipment platform. These are not
our target since these areas are too small and may be randomly set.
To avoid the interference of these factors and enhance the reliability
of the dataset, we filter out some non-standard data for training
and testing. Therefore, we first remove floor plans that contain
undefined room types or rooms with very low frequency. In our
dataset, we have 13 kinds of rooms after filtering. Then, we only
keep floor plans that satisfy all the following requirements:

(1) The total area of the floor plan is larger than 60 square meters
and less than 120 square meters.

(2) The number of rooms in the floor plan is larger than 3 and
less than 9.

(3) The floor plan has a living room.

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

234:4 • W. Wu et al.

CNN CNN

CNN

CNN

Regression

Continuing

Location

Stop

Living room Living room

Study room

Living roomKitchen

Study room

Master room
Second room

Bathroom

Balcony

Fig. 4. An iterative prediction model to predict room locations. Our prediction model consists of three deep networks. Given the boundary as input, our model
first adopts a regression network to choose a location for the living room. Based on this, a location network and a continuing network are iteratively used to
predict the types and locations of other rooms in a step-by-step manner. The iterative process stops when the continuing network decides not to add rooms.

(4) The proportion of the area of the living room to the total area
of the floor plan is larger than 0.25 and less than 0.55.

(5) The average area of each room is larger than 10 square meters
and less than 20 square meters.

After filtering, we are left with more than 80K floor plans in our
dataset, whose statistics are shown in Fig. 3 (a). 75K of them are
used for our network training, while half of the remaining data is
used as the test set, and the other half is used as the verification set.

Representation. We represent each floor plan in our dataset as
a four-channel image (Fig. 3 (c)). Specifically, we store the inside
mask in the first channel, the boundary information in the second
channel, and the semantics of rooms and walls in the third channel.
We use the specific integers (e.g., 0 for the living room) to represent
different masks. In the fourth channel, we store extra information to
distinguish between different rooms with the same labels. Different
integers are used to distinguish different roomswith the same labels.

5 TWO-STAGE APPROACH

5.1 Locating rooms
5.1.1 Living room first strategy.

Key observations. The living room is an indispensable part in the
modern residence and there are two key features: (1) it is usually
located in the central area of the floor plan and (2) connected to most
other rooms. Based on these observations, we develop a living room
first strategy, which predicts the location of the living room first
(Fig. 4). Once the living room is determined, the connectivity can
be obtained by detecting the adjacencies between the living room
and other rooms. A separated prediction model for the living room
helps to improve the predictive accuracy and the overall rationality
of the floor plan, as shown in Fig. 5.

Our iterative strategy. Inspired by [Ritchie et al. 2019; Wang et al.
2018], we propose the following iterative strategy (Fig. 4):

(1) Computing the location of the living room.
(2) Deciding what type of room to add and where.
(3) Deciding whether to add another room. If yes, go to Step (2);

otherwise stop the algorithm.

5.1.2 Living room regression. We determine the location of the
living room through a regression network.

Training dataset. We build a training dataset for the regression
network with a multi-channel image as the input and the location of

(a1) (b1) (c1)

(a2) (b2) (c2)

Entrance

Entrance

Fig. 5. Illustration of the importance of our living room first strategy. Top
row: examples generated by our method without the living room regression
network. Bottom row: examples generated by our method. The living room
is shown as a red block. (a1) lacks a living room which is necessary for a
residential building. (b1) chooses a location for another room that is very
close to the centroid of the living room. In (c1), the connection between the
living room and the entrance is blocked by another room.

the living room as the regression target. Since the shape of the living
room is a polygon, we represent the location of the living room as
the centroid of the polygon. The multi-channel input includes the
following information at each pixel, which defaults to 0:

• Inside mask: taking a value of 1 for the interior.
• Boundary mask: taking a value of 1 for the exterior walls and
0.5 for the front door.

• Entrance mask: taking a value of 1 for the front door.

Network architecture. We use a modified Resnet-34 [He et al. 2016]
to extract the spatial features from the multi-channel input. The
Resnet-34 architecture is modified to use 256 × 256 multi-channel
images as inputs. We drop the last average pooling layer and fully
connected (FC) layer, and append two convolution layers. We then
use batch normalization (BN) and leaky rectified linear unit (leaky
ReLU) between two convolution layers. We add an average pooling
layer at the end of the network to obtain two-dimensional coordi-
nates. We train the regression network using the robust smooth L1
loss [Girshick 2015], which is less sensitive than the L2 loss.

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

Data-driven Interior Plan Generation for Residential Buildings • 234:5

(a) Floor plan (b) Ground truth (c) Simplification
Fig. 6. Simplified representation. Given a floor plan (a), the ground truth
(b) contains a set of rooms which are in the shape of a polygon. For the
convenience of training, room shapes are simplified into small squares (green
squares in (c)) centered on room centroids (red dots in (b)).

5.1.3 Room type and location. Given the previously generated room
types and locations, we use an encoder-decoder network to deter-
mine a new room type and location.

Training dataset. To make the dataset amenable to train our pre-
diction network, we simplify the representation of each room in the
floor plan (Fig. 6). We use a small square (18 × 18) centered on the
centroid of a room to represent this room. We then build a training
dataset for the prediction network by randomly removing rooms
from the floor plan of the dataset. Since our prediction network is
based on the living room regression, we ensure that all samples in
the training dataset contain a living room. The input for our loca-
tion network is also a multi-channel image. Except for the channels
in living room regression, we add additional room masks (i.e., the
18 × 18 squares at the room centroids) for each individual existing
room in the floor plan. Finally, we add another channel that contains
all existing room masks to allow the prediction network to have a
global grasp of the overall existing room distribution. The target of
our prediction network is a labeled image that is the same size as
the input image. Aside from room types, we add three more labels:
EXISTING (i.e., a pixel belonging to existing rooms), NOTHING (i.e.,
a pixel belonging to the interior but not occupied by any rooms),
and OUTSIDE (i.e., a pixel belonging to the exterior).

Network architecture. For the network architecture, we borrow
the atrous spatial pyramid pooling (ASPP) from [Chen et al. 2018].
We modify the ASPP architecture based on Resnet-34, and drop their
last upsampling layer. Instead, we append an atrous convolution
layer and a deconvolution layer at the end of the network. The
deconvolution layer is used to upsample to the target size. We find
this modification improves the accuracy. Since our location network
performs a pixel-classification task, we use averaged pixel-wise
cross entropy loss.

Sampling. Our prediction map is generated with noise, which is
very common for large generative models. To reduce the impact of
the noise, we adopt a more direct sampling method to obtain the
type and location of the new room at the same time, as shown in
Fig. 7. Our sampling process contains the following steps:

(1) For each pixel p with a room label in the prediction map, we
compute the number of pixels (denoted as Np), which have
the same label as p and are in the 18 × 18 neighborhood of p.

(2) Choose the location of the pixel that has the greatest Np as
the center of the newly added room.

(a) Current scene (b) Sampling (c) Next scene
Fig. 7. Illustration of the process of location sampling. The type and loca-
tion of the new room are chosen together when sampling. For the current
scene (a), our network generates a prediction map (b). The white represents
existing rooms (green squares in (a)) in the current scene, and the gray rep-
resents locations of candidate rooms that may be added. For each location,
we consider a square area centered on this location (the hollow green square
in (b)) and count the number of pixels having the same room label within
the square area. The location with the most coverage pixel is sampled as
the new room to obtain the next scene (c).

(3) The type of the new room is the same as the label of the chosen
pixel and the new room is represented as the corresponding
18 × 18 square.

If more than one candidate pixel has the greatest Np , we pick one
randomly when sampling.

Discussions. We use an 18 × 18 square to improve the stability of
the learning process. Since most pixels are with non-room labels,
learning an 18×18 square is much easier than learning a single point
with X-Y coordinates. It also weakens the category imbalances. Since
we filter out the floor plans in the training dataset with very small
rooms, the 18 × 18 square will not cause that squares of different
rooms overlap with each other.

5.1.4 Continuing network. Given a set of generated room types and
locations, we develop a continuing network to determine whether
to terminate the algorithm.
To build the training dataset for the continuing network, we

first adopt representation simplification for each floor plan in our
dataset. Then we randomly choose half of the floor plans in our
dataset as negative samples with label TRUE (i.e., continue) and the
rest as positive samples with the label FALSE (i.e., terminate). For
each room in one negative sample, we discard it with a 50% chance.
The input for the continuing network is the same as the location
network, except that we add a count vector, whose dimension is the
number of room types, for the existing rooms to the input.
We adopt a similar network architecture to [Wang et al. 2018],

but we modify it with Resnet-34. For the last three fully-connected
layers, we only use leaky ReLU activation between these layers. The
continuing network performs a binary classification task, so we use
the standard binary cross entropy loss.

5.2 Locating walls
Prediction-based locating strategy. The next step is to locate walls

to allocate space for each room. Previous constraint-based meth-
ods can be directly applied by formulating room locations into
constrains. However, to generate a plausible floor plan, additional
constraints, such as geometric constraints and topology constraints,
should be provided. On the one hand, these inputs complicate the
design process for users, since constraint design requires increased
consideration. On the other hand, a system that includes too many
constraints may have no solutions due to the contradictions between

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

234:6 • W. Wu et al.

CNN CNN

Predicting Walls
Vectorizing

Living room
Kitchen

Study room

Master room
Second room

Bathroom

Balcony

Fig. 8. Given the boundary and predicted rooms, the encoder-decoder net-
work predicts walls on the pixel level. We use a post-processing step to
convert the predicted wall map into the vector representation.

constraints. Therefore, we propose a prediction-based locating strat-
egy, as shown in Fig. 8. Specifically, we first use an encoder-decoder
network to predict walls in discrete pixels given the boundary and
room locations. Then, a post-processing step is applied to convert
the predicted walls into a vector representation.

5.2.1 Encoder-decoder prediction. After locating rooms, we should
now have a series of room types and locations. The next step is
to build walls based on this information. Given the boundary and
predicted rooms, we use an encoder-decoder network to predict the
locations of walls.
To build a training dataset for our wall locating network, as we

did before, we first adopt a representation simplification for each
floor plan in our dataset. The input for the network is the same as the
room locating network. Our training target is a labeled image that
is the same size as the input image. We have three kinds of labels
for each pixel: WALL (i.e., a pixel belonging to walls), NOTHING
(i.e., a pixel belonging to the interior but not part of any walls) and
OUTSIDE (i.e., a pixel belonging to the exterior). We treat room
doors as parts of walls, though we can predict locations for room
doors at the same time. We will pursue this further in future work.
We use the same network architecture as in the room locating

network due to the similar pixel-classification tasks. We then use
averaged pixel-wise cross entropy loss to train our network.

5.2.2 Vectorization. Our network generates a wall map with dis-
crete pixels representing walls. Although we obtain the approximate
outlines of walls from the wall map, there are still a few issues re-
maining. We use a post-processing step to convert the wall map
into a vector representation. We implement the vectorization using
four steps, as shown in Fig. 9.

Step (1). Decompose and fit the noise predicted walls into rectan-
gular parts. For a noise wall map (Fig. 9 (a)), we first perform the
morphological closing operation. Then, the walls are decomposed
into vertical and horizontal wall blocks, which are represented as
their bounding boxes. Finally, these wall blocks are transformed
with a fixed wall width, as shown in Fig. 9 (b).

Step (2). Connect and align thewall blocks to recover the complete
walls (Fig. 9 (c)). Separated blocks are connected by computing
the intersection of horizontal and vertical wall blocks. For further
optimization, we adjust the wall blocks locally: (1) close wall blocks
within a certain threshold are merged together; and (2) wall blocks
are moved to align with other wall blocks or the exterior walls.

Step (3). Obtain the label for each pixel based on the predicted
rooms and recovered walls. To derive room geometry from the

(a) (b) (c) (d)

Living room

Kitchen Master room

Second room

Bathroom

Fig. 9. Illustration of the process of vectorization. (a) Input noise wall map.
(b) Decomposed wall blocks with a fixed width. (c) Complete walls. (d) Final
result with room geometry, doors, and windows.

normalized wall map, the predicted room locations are used to
generate pixel-wise semantics according to the connection between
pixels. We also compute the semantics of exterior walls, entrance,
and interior walls. In Fig. 9 (d), we show the semantics.

Step (4). Set doors and windows. The connectivity is determined
based on the key observation that most doors are connected to
the living room. We use this prior information to add passageways
between the living room and other rooms. In addition, a passageway
between any other connected rooms is added. Two empirical rules
are proposed to place the passageways:

(1) Open-walls are placed in public rooms (i.e., kitchen and bal-
cony); otherwise, we place ordinary doors.

(2) We place the door in the wall that minimizes the distance
from the door to the front door.

The windows are placed based on two empirical rules:
(1) We set the French windows for the living room and small

windows for the bathroom in the consideration of privacy;
otherwise, we set the ordinary windows.

(2) Except for the bathroom, windows are laid out along the
longest exterior wall segments within each room. We set at
most one window at the center of the wall segments.

These heuristics are simple but available. Fig. 9 (d) shows the final
result of the floor plan. A learning based method is expected to
improve this process.

6 EXPERIMENTS

6.1 Implementation details
We use PyTorch to implement and train our networks. All models
are trained and tested on an NVIDIA GeForce GTX 980 GPU. It takes
around two days to train the regression network for the living room
as well as the continuing network. Training takes around five days
for both the room locating network and the wall locating network.
The details of network architectures and training are available in
the supplementary material.
Our regression network performs well with an average error of

0.82 meters (i.e. the actual distance from the predicted location to
the ground truth) in the validation dataset. The continuing network
reaches around 99% validation accuracy. In the pixel-classification
task, we have a class imbalance problem, since most of the target
labels are auxiliary labels (i.e. NOTHING and OUTSIDE). To fix this
issue and improve the accuracy, we use weighted cross entropy loss

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

Data-driven Interior Plan Generation for Residential Buildings • 234:7

with a weight of 1.25 for the room class or the wall class and 1 for
auxiliary classes.
At synthesis time, it takes around four seconds to generate a

vectorized floor plan given the building boundary as input.

6.2 User study
We perform comparisons to other methods or human-created floor
plans through user studies.

Competitors. We select state-of-the-art methods as the competi-
tors. The networks for indoor scene synthesis [Wang et al. 2018] can
be used to locate rooms.We denote the network of [Wang et al. 2018]
as ISSNet. Given the room locations, the MIQP-based method [Wu
et al. 2018] can be used to determine the wall positions. Then, the
method first uses ISSNet to locate rooms and then uses MIQP to
locate walls is the first competitor (denoted as ISSNet+MIQP). Re-
placing the ISSNet of ISSNet+MIQP with our first stage approach for
locating rooms is the second competitor (denoted as Stage1+MIQP).
We substitute the MIQP of ISSNet+MIQP with our second stage
approach for locating walls to defne the third competitor (denoted
as ISSNet+Stage2). The human-created is the fourth competitor (de-
noted as Human). We provide more details for ISSNet and MIQP in
the supplementary material.

User studies. Given a pair of floor plans that share the same bound-
ary, the forced-choice comparison task is designed, similar to [Wang
et al. 2018]. In each task, each participant should choose the floor
plan that they think is more plausible. To be fair, we randomly
choose examples used for user studies from our generated results.
For each pair, the order of floor plans is randomized. We provide a
questionnaire used for comparison to human-created floor plans in
the supplementary material.

We use the same user study design for four competitors. Each user
study includes 30 forced-choice comparison tasks. In one out of each
of the 15 tasks, we perform a “vigilance test”, in which an obviously
wrong answer (specially, one floor plan with a randomized, jumbled
arrangement of random rooms) is displayed.

For each user study, the number of participants enrolled is 86, 81,
85 and 99, respectively. The participants are classified into general
users and designers who practice interior design as a profession. If
one participant does not achieve 100% accuracy on the vigilance
tests, we discard this response. The statistics of the participants
in each comparison study are shown in Table 1. For each partici-
pant, we record the number (denoted as N) of floor plans that are
generated by our method and preferred by that participant.

Results. The average and standard deviation for all the general
users or designers in one user study are denoted as Navg and Nstd,
respectively. The histograms in Fig. 10 show the distributions of
N . Note that in Table 1 and Fig. 10, we only record the data from
participants who pass the vigilance tests in each user study.

A score of around 14 (28 non-vigilance choices in total) indicates
that the two methods are comparable. From the distributions in
Fig. 10, our method is comparable to the competitor Human and
outperforms the other three competitors.
Some participants failed the vigilance tests. We found about 7%

of participants spent less than 1 minute and 21% of participants

Table 1. Statistics for user studies. We report the number of participants
(“#part”) who pass the vigilance tests, their age range, the average age aavg,
the standard deviation of their ages adev, the number of males and females,
and the number of participants who practice interior design as a profession
(“#prof”). For these professional designers, the time (in years) spent in this
profession is recorded, and we report the average (yavg) and the standard
deviation (ydev). We also record the time (in minutes) spent by participants
in completing the study, and we report the average (tavg) and the standard
deviation (tdev).

Competitor #part Age Range aavg/adev Male, Female #prof yavg/ydev tavg/tdev

ISSNet+MIQP 71 [18, 50] 25.71/5.37 48, 23 24 3.33/2.58 3.30/1.58
Stage1+MIQP 60 [18, 49] 24.90/4.50 41, 19 26 2.04/1.34 2.88/1.78
ISSNet+Stage2 58 [18, 50] 25.34/5.94 37, 21 29 2.41/2.08 3.23/1.58

Human 71 [20, 50] 26.62/5.60 45, 26 33 3.38/2.60 4.97/2.56

5 10 15 20 25
0

5

10

5 10 15 20 25
0

5

10

5 10 15 20 25
0

2

4

6

5 10 15 20 25
0

2

4

6

5 10 15 20 25
0

2

4

5 10 15 20 25
0

2

4

5 10 15 20 25
0

2

4

6

8

5 10 15 20 25
0

2

4

6

8

General Users Designers

Navg = 13.39
Nstd = 2.34

Navg = 11.70
Nstd = 2.49

Navg = 20.76
Nstd = 3.25

Navg = 18.72
Nstd = 3.67

Navg = 20.11
Nstd = 2.79

Navg = 19.35
Nstd = 4.29

Navg = 20.55
Nstd = 4.29

Navg = 18.88
Nstd = 2.94

Fig. 10. Distributions of N . From the top, each successive row represents
the results of comparisons of ISSNet+MIQP, Stage1+MIQP, ISSNet+Stage2,
and Human.

spent less than 2 minutes finishing comparison tasks. So quite a few
participants are perfunctory and dropped by the vigilance test.

We also observe that the average score of general users is less than
designers’. For example, in the results of comparisons of Human,
Navg is 13.39 for general users and 11.70 for designers. Designers
usually focus on the details (e.g., orientations and relative sizes
between rooms) of the floor plans, while the general users often
judge the plausibility with personal preference. Our method may
not learn those details very well. So designers favored the human-
designed layouts more than general users.

6.3 Comparisons
Comparison to ISSNet+MIQP. ISSNet computes category probabili-

ties on a single pixel, which operates like an image-to-pixel function,
and has problems with global consistency and noise suppression

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

234:8 • W. Wu et al.

(a) (b) (c) (d) (e)

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room
Kitchen

Master room
Second room

Bathroom

Balcony Living room

Kitchen

Master room

Second room

Bathroom

Study room Living roomKitchen

Master roomSecond room Bathroom

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

KitchenSecond room

Bathroom

Living room

Kitchen

Master room

Bathroom
Living room

Kitchen

Master room

Second room

Bathroom
Living room

Kitchen

Master room

Second room

Bathroom

Living room

Kitchen

Master room

Second room
Bathroom

Balcony

Fig. 11. Comparison to ISSNet+MIQP. Top row: results of ISSNet+MIQP. Bottom row: our results. In column (a), ISSNet+MIQP omits a necessary master room,
which our method preserves. Column (b) shows that ISSNet+MIQP generates a sparse floor plan with only four rooms while the result of our method looks
more realistic. ISSNet+MIQP synthesizes some rooms with unreasonable sizes in columns (c) and (d), such as the kitchen in column (c) and the bathroom in
column (d). In column (e), ISSNet+MIQP generates a floor plan where the second room is blocked by the bathroom.

when sampling. MIQP is a hierarchical optimization with geometric
constraints and topology constraints. To this end, room locations
predicted by ISSNet are formulated into position constraints for
MIQP. We do not use any connection constrains between two rooms
since the connections are unclear. Moreover, too many constraints
for MIQP may result in contradictions and lead to no solutions.
In the user study, average 20.55 floor plans of our method are

preferred by general users and average 18.88 by designers, which
indicates that participants preferred floor plans generated by our
method to those generated by ISSNet+MIQP. Fig. 11 shows some
representative results generated by ISSNet+MIQP and our method.
ISSNet+MIQP generates floor plans with some necessary rooms
missing which leads to sparse space allocation (columns (a) and
(b)), and some rooms with unreasonable geometric sizes and shapes
(columns (c) and (d)). In contrast, our method performs better in
terms of global consistency and achieves better plausibility.

Comparison to Stage1+MIQP. Stage1+MIQP uses our first stage
approach to locate rooms and then uses MIQP to generate walls.
Similar to ISSNet+MIQP, the room locations predicted by our net-
work serve as the location constraints for MIQP. We also do not add
any connection constraints between two rooms to avoid the issue
of constraint contradiction.
In the user study, average 20.11 floor plans of our method are

preferred by general users and average 19.35 by designers, which in-
dicates that participants preferred results generated by our method
over those generated by Stage1+MIQP. The room types and loca-
tions predicted by our network become the initializations for MIQP.
Although our network performs well at predicting room types and

locations, MIQP fails in many examples with a few issues. The first
issue is accessibility. In Fig. 12, columns (a) and (b) show that themas-
ter rooms generated by Stage1+MIQP are blocked by other rooms
and cannot be entered. In column (c), the entrance is incorrectly con-
nected to the bathroom. Geometric dimensions are another problem.
In columns (d) and (e), MIQP generates some rooms with abnormal
sizes, which are not suitable for residential buildings.

Comparison to ISSNet+Stage2. While ISSNet serves as an image-
to-pixel function, our room locating network can be treated as an
image-to-image function, which predicts the possible locations of all
types of rooms in an input image. Our network has greater integrity
and consistency in global layouts compared to ISSNet. We then
compare our method to ISSNet+Stage2 using ISSNet for locating
rooms and our wall locating network to generate walls.
In the user study, average 20.76 floor plans of our method are

preferred by general users and average 18.72 by designers, which in-
dicates that participants preferred results generated by our method.
ISSNet has the global consistency problem and may introduce noise
due to its image-to-pixel learning process, which causes that nec-
essary rooms are omitted in many cases, as shown in Fig. 13 (a)
and (b). Column (c) shows ISSNet+Stage2 generates a floor plan
with only four rooms while our method generates a six-room floor
plan. Although a four-room floor plan is acceptable, participants
preferred the more intensively populated floor plan generated by
our method. In column (e), ISSNet+Stage2 synthesizes an abnormal
floor plan where the balcony is connected to the bathroom, which
violates the privacy of the bathroom. Benefiting from the image-
to-image learning process, our method performs better in terms

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

Data-driven Interior Plan Generation for Residential Buildings • 234:9

(a) (b) (c) (d) (e)

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

KitchenMaster room
Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Living room

Kitchen

Master room

Second room
Bathroom

Balcony

Study room

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room
KitchenMaster room Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom
Living room

Kitchen

Master room

Second room

Bathroom

Balcony
Study room

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Fig. 12. Comparison to Stage1+MIQP. Top row: results of Stage1+MIQP. Bottom row: our results. Columns (a), (b) and (c) show the connection problem of
Stage1+MIQP. Master rooms generated by Stage1+MIQP cannot be entered in columns (a) and (b), and the entrance, which should be connected to the living
room, is incorrectly connected to the bathroom in column (c). In columns (d) and (e), the examples show that Stage1+MIQP synthesizes floor plans with
unreasonable geometric dimensions. The balconies in column (d) and column (e) generated by Stage1+MIQP are much larger than normal.

(a) (b) (c) (d) (e)

Living room

Kitchen

Master roomSecond room

Bathroom

Balcony

Study room

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room
Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room
Bathroom

Balcony

Study room

Living roomKitchen

Second room

Bathroom

Living room

Kitchen

Master room

Second room

Balcony

Living room

Kitchen

Master room

Bathroom
Living room

Kitchen

Master roomBathroom Living room

Kitchen

Master room

Second room

Bathroom
Balcony

Fig. 13. Comparison to ISSNet+Stage2. Top row: results of ISSNet+Stage2. Bottom row: our results. ISSNet+Stage2 neglects to add a master room in column (a),
and omits a bathroom in column (b). In column (c), ISSNet+Stage2 generates a sparse floor plan with only four necessary rooms while our method generates
six. In column (d), the floor plan generated by ISSNet+Stage2 does not have enough space for users to enter the kitchen. The example of ISSNet+Stage2 in
column (e) shows an unusual layout where the bathroom is equipped with a balcony.

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

234:10 • W. Wu et al.

(a) (b) (c) (d) (e)

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room
Second room

Bathroom

Living room

Kitchen

Master room

Second room
Bathroom

Balcony

Study room

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Living room

Kitchen

Master room

Second room

BathroomStorage

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room Second room

Bathroom

Balcony

Study room

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Fig. 14. Comparison to Human. Top row: results of Human. Bottom row: our results. Columns (a), (b), and (c) show that our method generates reasonable
floor plans that differ slightly from the original human-designed results. Columns (d) and (e) show that our method generates floor plans similar to original
human-designed results with only few differences.

of room distribution and thus achieves better global integrity and
consistency compared to ISSNet+Stage2.

Comparison to Human. We finally compare the floor plans gen-
erated by our method with original floor plans from our dataset.
These floor plans are designed manually using a combination of
intuition, prior experience, and professional knowledge.

In the user study, average 13.39 floor plans of our method are pre-
ferred by general users and average 11.70 by designers. Participants
show a slight preference for the human-designed floor plans to those
generated by our method. In Fig. 14, columns (d) and (e) illustrate
that our method generates floor plans similar to those created by
humans with only few differences, which proves the validity of our
method. For columns (a), (b), and (c), our method provides different
design options compared to the original human-created floor plans.
Note that the human-created results of Fig. 11, Fig. 12, and Fig. 13
are shown in the supplementary material.

6.4 Evaluation and discussion
Room constraints. Our method can support the location constraint

that specifies the locations of some rooms. According to personal
preferences and requirements, users first choose the locations for
several specific rooms inside the given boundary. Then our method
generates other rooms and respects user’s design intent. Fig. 15
shows several examples generated by our method, where one or
more room locations are specified by users.

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Fig. 15. Examples of floor plans synthesized by our method, given one or
two room locations specified by users (red dots). From left to right: no
specified room, specified master room, and specified kitchen and bathroom.

Nearest neighbors. We examine the ability of our method to gen-
erate floor plans beyond its training dataset, which does not just
memorize the training dataset. Given a boundary, we generate our
result and use the boundary to search the nearest neighbor in the
training dataset. All of our results are different from the nearest
neighbors. Fig. 16 shows three pairs of them. In addition, given the
same boundary as input, our method can also generate different
results from the human-created results, as shown in the user study.
It indicates the result variety and generalization of our method.

Non axis-aligned input. Although RPLAN only contains floor
plans with axis-aligned walls, our method still works well when the
input boundary is non axis-aligned. We show six examples in Fig. 17

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

Data-driven Interior Plan Generation for Residential Buildings • 234:11

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master roomSecond room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Fig. 16. Comparison to the nearest neighbors in the training dataset. Top
row: the nearest neighbors. Bottom row: our synthesized results.

Living room

Kitchen
Master room

Second room

Bathroom

Balcony

Living room

Kitchen

Master room

Study room

Bathroom

Balcony

Living room

Kitchen

Master room

Second room

Balcony

Living room
Kitchen

Master room

Second room
Study room

Bathroom

Living room

Kitchen

Master room

Second room
Bathroom

Balcony
Living roomKitchen

Master room

Bathroom
Balcony

Fig. 17. Floor plan generation for non axis-aligned boundaries. In the bottom
row, the examples contain curved walls.

Living room

Kitchen

Master room

Second room

Bathroom

Balcony

Living room
Kitchen

Master room Second room

Bathroom

Balcony

Living room
Kitchen

Master room

Second room

Bathroom

Study room

Fig. 18. Synthesizing multiple floor plans given the same boundary as input.

and more examples in the supplementary material. This indicates
that our model generates floor plans beyond its training dataset.

Multiple floor plans. Since we sample a new room based on the
maximum number of coverage points in the prediction map, only
one solution is generated by our sampling method. To generate
multiple floor plans given the same boundary as input, we gen-
erate a sample based on the probability distribution of predicted
rooms. Fig. 18 shows one example, where our method takes the
same boundary as input and generates multiple floor plans.

Failure cases. While our method generates plausible floor plans,
it does fail in some cases, as shown in Fig. 19. Our method may

(a) (b) (c)
Fig. 19. Typical failed floor plans generated by our method. Top row: walls
predicted by our method. Bottom row: vectorization results of our method.
(a) shows insufficient space for a door to the master room (the red area). (b)
shows too much noise in the original wall map generated by our method,
and (c) shows broken walls. Both examples lead to incorrect space allocation
in the vectorization.

generate some rooms with inappropriate arrangements. As shown
in (a), the door to the master rooms is too small for users to enter.
Another failure case is caused by poor wall predictions. In (b), our
network predicts walls with a lot of noise, which is difficult to deal
with in post-processing, so the vectorization result is problematic.
Although our post-processing works well, it cannot handle cases
when necessary wall pixels are missing. The broken walls are hard
for our post-processing to handle, which leads to incorrect space
allocations in (c). We consider floor plans with incorrect walls as the
problematic layouts (Fig. 19). We test the frequency of problematic
floor plans using 100 generated examples. We generate 94 plausible
floor plans and the problematic frequency is low.

7 CONCLUSION
Our method provides a novel data-driven technique for automati-
cally and efficiently generating floor plans for residential buildings
with fixed boundary. By imitating the human design process, we
propose a two-stage approach to generate floor plans. To effectively
train our networks, a large-scale dataset containing more than 80K
floor plans from real residential buildings is presented. By compar-
ing the plausibility of floor plans through user studies, our method
outperforms state-of-the-art methods, and in some cases our floor
plans are comparable to human-created ones.

Constraints in real life. In general, we propose an automatic algo-
rithm for generating floor plans from the given boundaries. How-
ever, in actual design work, design with additional constraints (e.g.,
constrained square footage, support walls, and house orientation)
seems to be more meaningful and challenging. One simple and

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

234:12 • W. Wu et al.

straightforward solution is to introduce more generative models
for these additional constraints. Or, we could turn these unfamiliar
constraints into room constraints which our method can deal with.
We would like to explore more in the future.

More types of buildings. Currently, our method only designs floor
plans for one-story residential buildings. For multi-story homes,
stairs are necessary to connect two consecutive floors. Our method
can be applied by conceptualizing the stairs as a type of room.
We generate the first floor plan containing the stairs, and then
the second floor plan is generated based on the first. The stairs
generated in the first floor should serve as a constraint for the
generation of the second floor. However, in the real world, stairs
have special shapes and location considerations, and it may be hard
for our deep networks to control the generation of stairs. Our two-
stage approach, even without the living-room-first-strategy, can
also be extended to other types of buildings, such as office buildings,
shopping malls, and supermarkets. However, the prerequisite for
all these considerations is that we must have relevant data.

ACKNOWLEDGMENTS
We would like to thank Kai Wang for providing their implementa-
tion of [Wang et al. 2018], user study participants for evaluating
our results, and the anonymous reviewers for their constructive
suggestions and comments. This work is supported by the National
Natural Science Foundation of China (61802359, 61672482, 11626253)
and the Fundamental Research Funds for the Central Universities
(WK0010460006, WK0010450004).

REFERENCES
Daniel G. Aliaga, Carlos A. Vanegas, and Bedrich Benes. 2008. Interactive Example-

based Urban Layout Synthesis. ACM Trans. Graph. 27, 5 (2008), 160:1–160:10.
Scott A Arvin and Donald H House. 2002. Modeling architectural design objectives in

physically based space planning. Automation in Construction 11, 2 (2002), 213 – 225.
Alper Aydemir, Patric Jensfelt, and John Folkesson. 2012. What can we learn from 38,000

rooms? Reasoning about unexplored space in indoor environments. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 4675–4682.

Arash Bahrehmand, Thomas Batard, Ricardo Marques, Alun Evans, and Josep Blat. 2017.
Optimizing layout using spatial quality metrics and user preferences. Graphical
Models 93 (2017), 25 – 38.

Fan Bao, Dong-Ming Yan, Niloy J. Mitra, and Peter Wonka. 2013. Generating and
Exploring Good Building Layouts. ACM Trans. Graph. 32, 4 (2013), 122:1–122:10.

Guoning Chen, Gregory Esch, Peter Wonka, Pascal Müller, and Eugene Zhang. 2008.
Interactive Procedural Street Modeling. ACM Trans. Graph. 27, 3 (2008), 103:1–
103:10.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. 2018. Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis
and machine intelligence 40, 4 (2018), 834–848.

Tian Feng, Lap-Fai Yu, Sai-Kit Yeung, KangKang Yin, and Kun Zhou. 2016. Crowd-driven
Mid-scale Layout Design. ACM Trans. Graph. 35, 4 (2016), 132:1–132:14.

Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan.
2012. Example-based Synthesis of 3D Object Arrangements. ACM Trans. Graph. 31,
6 (2012), 135:1–135:11.

Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision. 1440–1448.

Evan Hahn, Prosenjit Bose, and AnthonyWhitehead. 2006. Persistent Realtime Building
Interior Generation. In Proceedings of the 2006 ACM SIGGRAPH Symposium on
Videogames. 179–186.

Mikako Harada, Andrew Witkin, and David Baraff. 1995. Interactive Physically-based
Manipulation of Discrete/Continuous Models. In Proc. SIGGRAPH. 199–208.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 770–778.

Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup. 2013.
Procedural Content Generation for Games: A Survey. ACM Trans. Multimedia
Comput. Commun. Appl. 9, 1 (2013), 1:1–1:22.

Hao Hua. 2016. Irregular architectural layout synthesis with graphical inputs. Automa-
tion in Construction 72 (2016), 388 – 396.

Ahti Kalervo, Juha Ylioinas, Markus Häikiö, Antti Karhu, and Juho Kannala. 2019.
CubiCasa5K: A Dataset and an Improved Multi-Task Model for Floorplan Image
Analysis. In Scandinavian Conference on Image Analysis. Springer, 28–40.

Jianan Li, Tingfa Xu, Jianming Zhang, Aaron Hertzmann, and Jimei Yang. 2019. Layout-
GAN: Generating Graphic Layouts with Wireframe Discriminator. In International
Conference on Learning Representations.

Robin S Liggett. 2000. Automated facilities layout: past, present and future. Automation
in Construction 9, 2 (2000), 197 – 215.

Chen Liu, Jiaye Wu, and Yasutaka Furukawa. 2018. FloorNet: A Unified Framework for
Floorplan Reconstruction from 3D Scans. In ECCV 2018. 203–219.

Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Furukawa. 2017. Raster-to-Vector:
Revisiting Floorplan Transformation. In ICCV 2017. 2214–2222.

Han Liu, Yong-Liang Yang, Sawsan AlHalawani, and Niloy J. Mitra. 2013. Constraint-
aware interior layout exploration for pre-cast concrete-based buildings. The Visual
Computer 29, 6 (2013), 663–673.

Chongyang Ma, Nicholas Vining, Sylvain Lefebvre, and Alla Sheffer. 2014. Game Level
Layout from Design Specification. Comput. Graph. Forum (EG) 33, 2 (2014), 95–104.

Paul Merrell, Eric Schkufza, and Vladlen Koltun. 2010. Computer-generated Residential
Building Layouts. ACM Trans. Graph. 29, 6 (2010), 181:1–181:12.

Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen Koltun. 2011.
Interactive Furniture Layout Using Interior Design Guidelines. ACM Trans. Graph.
30, 4 (2011), 87:1–87:10.

JeremyMichalek, Ruchi Choudhary, and Panos Papalambros. 2002. Architectural layout
design optimization. Engineering optimization 34, 5 (2002), 461–484.

Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006.
Procedural Modeling of Buildings. ACM Trans. Graph. 25, 3 (2006), 614–623.

Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2014. Learning Layouts
for Single-Page Graphic Designs. IEEE. T. Vis. Comput. Gr. 20, 8 (2014), 1200–1213.

Chi-Han Peng, Yong-Liang Yang, Fan Bao, Daniel Fink, Dong-Ming Yan, Peter Wonka,
and Niloy J. Mitra. 2016. Computational Network Design from Functional Specifica-
tions. ACM Trans. Graph. 35, 4 (2016), 131:1–131:12.

Chi-Han Peng, Yong-Liang Yang, and Peter Wonka. 2014. Computing Layouts with
Deformable Templates. ACM Trans. Graph. 33, 4 (2014), 99:1–99:11.

Roberto J. Rengel. 2011. The Interior Plan: Concepts and Exercises. Fairchild Books.
Daniel Ritchie, Kai Wang, and Yu an Lin. 2019. Fast and Flexible Indoor Scene Synthesis

via Deep Convolutional Generative Models. In CVPR 2019.
Eugénio Rodrigues, Adélio Rodrigues Gaspar, and Álvaro Gomes. 2013a. An approach to

the multi-level space allocation problem in architecture using a hybrid evolutionary
technique. Automation in Construction 35 (2013), 482–498.

Eugénio Rodrigues, Adélio Rodrigues Gaspar, and Álvaro Gomes. 2013b. An evolu-
tionary strategy enhanced with a local search technique for the space allocation
problem in architecture, Part 1: Methodology. Computer-Aided Design 45, 5 (2013),
887–897.

Eugénio Rodrigues, Adélio Rodrigues Gaspar, and Álvaro Gomes. 2013c. An evolu-
tionary strategy enhanced with a local search technique for the space allocation
problem in architecture, Part 2: Validation and performance tests. Computer-Aided
Design 45, 5 (2013), 898–910.

Julian F. Rosser, Gavin Smith, and Jeremy G. Morley. 2017. Data-driven estimation of
building interior plans. International Journal of Geographical Information Science 31,
8 (2017), 1652–1674.

Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A Survey on
Procedural Modelling for Virtual Worlds. Comput. Graph. Forum 33, 6 (2014), 31–50.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. 2017. Semantic scene completion from a single depth image. In CVPR.
1746–1754.

Kai Wang, Manolis Savva, Angel X. Chang, and Daniel Ritchie. 2018. Deep Convolu-
tional Priors for Indoor Scene Synthesis. ACM Trans. Graph. 37, 4 (2018), 70:1–70:14.

Wenming Wu, Lubin Fan, Ligang Liu, and Peter Wonka. 2018. MIQP-based Layout
Design for Building Interiors. Comput. Graph. Forum (EG) 37, 2 (2018), 511–521.

Shang-Ta Yang, Fu-En Wang, Chi-Han Peng, Peter Wonka, Min Sun, and Hung-Kuo
Chu. 2019. DuLa-Net: A Dual-Projection Network for Estimating Room Layouts
from a Single RGB Panorama. In CVPR 2019.

Yong-Liang Yang, Jun Wang, Etienne Vouga, and Peter Wonka. 2013. Urban Pattern:
Layout Design by Hierarchical Domain Splitting. ACM Trans. Graph. 32, 6 (2013),
181:1–181:12.

Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F. Chan, and
Stanley J. Osher. 2011. Make It Home: Automatic Optimization of Furniture Ar-
rangement. ACM Trans. Graph. 30, 4 (2011), 86:1–86:12.

Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem. 2018. Layoutnet: Reconstruct-
ing the 3d room layout from a single rgb image. In CVPR 2018. 2051–2059.

ACM Trans. Graph., Vol. 38, No. 6, Article 234. Publication date: November 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Dataset of RPLAN
	5 Two-Stage approach
	5.1 Locating rooms
	5.2 Locating walls

	6 Experiments
	6.1 Implementation details
	6.2 User study
	6.3 Comparisons
	6.4 Evaluation and discussion

	7 Conclusion
	Acknowledgments
	References

