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a b s t r a c t 

Power diagrams, as a powerful extension of Voronoi diagrams, have been utilized in a wide range of 

applications in various fields. By imposing the capacity constraint and the centroid constraint to the or- 

dinary power diagram, capacity-constrained power diagram and centroidal capacity-constrained power 

diagram can be obtained respectively, in which, all the capacity constraints are fixed values. However, 

some practical applications require a special kind of power diagrams, called hybrid capacity-constrained 

centroidal power diagrams, where not all capacity constraints are fixed values, and instead there are some 

capacities of sites constrained to intervals. To this end, we propose an iterative computation method for 

the power diagrams with hybrid capacity constraints. On the one hand, a weight evaluated method is in- 

troduced to update the weights of interval capacity-constrained sites, and Newton’s method is applied to 

optimize the weights of fixed-value capacity-constrained sites. On the other hand, Lloyd’s method is em- 

ployed to move the sites to their respective mass centers. Experimental results prove that the proposed 

method can effectively compute the centroidal power diagram with hybrid capacity constraints. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Voronoi diagrams have a wide range of applications and ex- 

ansions in computational geometry. Power diagram, as an im- 

ortant extension of the Voronoi diagram, introduces the “weight”

haracteristic to sites, and redefines the distances. By imposing 

he capacity constraint to the ordinary power diagram, a Capacity- 

onstrained Power Diagram (CCPD) can be obtained. By introduc- 

ng the centroidal constraint on a secondary basis, a Centroidal 

apacity-Constrained Power Diagram (CCCPD) can be obtained. 

ompared to Voronoi diagrams, due to the “weight” characteristic, 

ower diagrams have the characteristics of precise capacity con- 

traint. Consequently, power diagrams have been widely used in 

any fields, such as blue noise sampling [1,2] , mesh optimiza- 

ion [3] , fluid simulation [4] , computer animation [5] , location- 

llocation problem [6] , sector division [7] , and grain structure rep- 

esentation of polycrystalline materials [8] , etc. 

Aurenhammer et al. first introduce the concepts, properties, 

omputation methods, and applications of power diagrams [9,10] . 

mai et al. [11] summarize the theory and application of planar 

ower diagrams. Gavrilova et al. [12] construct the power dia- 
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ram based on the planar Voronoi diagram. However, in these re- 

earches, the issue of capacity optimization is ignored. 

Capacity is an important characteristic of power diagrams. Re- 

ently, a large number of researchers have a focus on the compu- 

ation method to obtain a power diagram that meets the capacity 

onstraints. Balzer et al. first propose a capacity-constrained power 

iagram generation algorithm for discrete space [13] and contin- 

ous space [14] . This algorithm combines the false position, one- 

y-one iteration, and Lloyd’s method [15] to stably obtain the CC- 

PD. However, due to the point-by-point iteration strategy, this al- 

orithm is a time-sonsuming approach in the view of computation 

rocess of CCCPD. 

de Goes et al. [16] use Newton’s method to optimize the 

eights, combined with the adaptive step-size gradient descent 

ethod proposed by Mullen et al. [17] to optimize the sites, and 

teratively obtained CCCPD alternately. However, the weight opti- 

ization and site optimization interface with each other in the 

ptimization process, and only have linear convergence. Bourne 

t al. [6] propose a generalized Lloyd’s method to compute the 

entroidal Power Diagram (CPD), and theoretically prove its lin- 

ar convergence. Xin et al. [18] develop an L-BFGS method with 

uper-linear convergence to compute the CCCPD with general dis- 

ance, and apply it to blue noise sampling, displacement interpola- 

ion and polygon convex decomposition. 

https://doi.org/10.1016/j.cag.2021.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.04.007&domain=pdf
mailto:g.zhang@hfut.edu.cn
https://doi.org/10.1016/j.cag.2021.04.007
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In recent years, Zheng et al. [19] propose a GPU-CPU hybrid 

lgorithm to accelerate the computation of power diagrams, which 

ses the GPU-based JFA algorithm to render and construct power 

iagrams, and then couples with the L-BFGS method to obtain 

CCPD. Compared to the state-of-art pure CPU power diagram 

omputation algorithm, this method has a significant improvement 

n the computation efficiency of power diagrams. 

In the existing power diagram researches, the preset capac- 

ty constraints of all sites are fixed values, and the capacity of 

ach site is approximate with the respective preset value in CC- 

PD. However, due to the difficultly of setting precise capacity 

onstrained values for all sites, there may be some sites with ca- 

acity constrained intervals in some practical applications, such as 

ocation-Allocation Problem (LAP) [20] , in which the hybrid capac- 

ty constraints are essential to be considered. To the best of our 

nowledge, this paper is the first research on the power diagrams 

ith hybrid capacity constraints. To this end, we propose an it- 

rative algorithm to compute the CPD with hybrid capacity con- 

traints. The main contributions of this work are as follows: 

1. Combining with the fixed-value capacity constraints and the 

interval capacity constraints, a novel power diagram is intro- 

duced, called Hybrid Capacity-Constrained Power Diagram (HC- 

CPD). By imposing the centroidal constraint on a secondary ba- 

sis, a Hybrid Capacity-Constrained Centroidal Power Diagram 

(HCCCPD) can be obtained. 

2. A weight evaluated method is developed to optimize the 

weights of sites with interval capacity constraints, and a Vari- 

able Capacity-Constrained Power Diagram (VCCPD) can be ob- 

tained. 

3. Coupling with Newton’s method and Lloyd’s method, our effi- 

cient computation method is proposed to compute the HCCCPD. 

The remainder of this paper is organized as follows. Section 2 

riefly reviews the preliminary of our method. Section 3 introduces 

he concepts of HCCCPD, and presents the iterative computation 

lgorithm for HCCCPD. In Section 4, we illustrate our experimental 

esults, and conclusions are given in Section 5. 

. Preliminary 

In this section, we introduce the concepts of power diagrams, 

nd some extensions of ordinary power diagrams. 

.1. Power diagram 

The Voronoi diagram defines a spatial subdivision of a given do- 

ain �. That is, given a set of sites X = { x i } n i =1 
, the Voronoi di-

gram is a partition of the domain � into n regions V = { v i } n i =1 
ased on the Euclidean distance. Voronoi cell v i of the site x i is 

efined as follow: 

 i = 

{
x | || x − x i || 2 ≤ || x − x j || 2 , f or j = 1 , ..., n and j � = i 

}
(1)

As an extension of Voronoi diagrams, power diagrams introduce 

 weight w i to the site x i , and the power cell p i of the site x i is

edefined as follow: 

p i = 

{
x | || x − x i || 2 − w i ≤ || x − x j || 2 − w j , 

f or j = 1 , ..., n and j � = i 
} (2) 

here d( x , x i ) = || x − x i || 2 − w i is defined as the power distance.

t should be mentioned that a power diagram degenerates to the 

oronoi diagram when all the weights of sites are equal [9] . 

.2. CCCPD 

Due to the introduction of weight to each site, power diagrams 

ave the characteristic of precise capacity constraints. By imposing 
109 
he capacity constraint and the centroidal constraint to an ordinary 

ower diagram, a CCCPD can be obtained. 

Let X = { x i } n i =1 
denote n given points (also called sites), with 

ssociated capacity constraints c i > 0 . Assuming that ρ( x ) is a C 1 -

mooth density function on the domain �, the capacity (i.e., area 

r volume) of each power cell p i can be computed: 

 i = | p i | = 

∫ 
p i 

ρ( x ) d x (3) 

herefore, the sum of the capacities of power cells is equal to the 

otal capacity of the domain �, that is: 

n 
 

i =1 

m i = 

∫ 
�

ρ( x ) d x (4) 

he power diagram with capacity constraints can be obtained by 

djusting the weight of each site until the capacity of site x i is 

qual to the preset capacity c i , that is, m i = c i . By imposing the

entroidal constraint to the power diagram with capacity con- 

traints, the CCCPD can be obtained, in which each site is located 

t its respective mass center, that is: 

 i = x 

∗
i = 

∫ 
p i 

x ρ( x ) d x ∫ 
p i 

ρ( x ) d x 

(5) 

. Hybrid capacity-constrained centroidal power diagram 

In this section, we describe the concepts of HCCCPD in detail. 

urthermore, an iterative algorithm is developed for computing 

CCCPD. 

.1. Problem description 

As mentioned above, by imposing the capacity constraint and 

he centroidal constraint to an ordinary power diagram, we can 

btain a HCCPD and a HCCCPD, respectively. We first recall the no- 

ions used for a power diagram. Let � ⊂ E d be a convex, closed, 

ounded and connected domain, ρ( x ) is a C 1 -smooth density func- 

ion on �. Let X = { x i } n i =1 
denote n given sites in �, W = { w i } n i =1 

epresent the associated weights. Then, the power diagram is a 

artition of the domain � into n disjoint convex polygons P = 

 p i } n i =1 
, where p i ∩ p j = ∅ and 

∑ n 
i =1 p i = �. 

Without loss of generality, let X f = { x i } m 

i =1 
be m (0 ≤

 ≤ n ) given sites with associated fixed capacity-constrained 

alues c i ∈ C f = { c i } m 

i =1 
, c i > 0 . X v = { x i } n i = m +1 

denote the re-

aining sites with associated capacity-constrained intervals 

 c min 
i 

, c max 
i 

] ∈ C v = { [ c min 
i 

, c max 
i 

] } n 
i = m +1 

, where c max 
i 

≥ c min 
i 

≥ 0 and
 m 

i =1 c i + 

∑ n 
i = m +1 c 

max 
i 

≥ ∫ 
� ρ( x ) d x ≥ ∑ m 

i =1 c i + 

∑ n 
i = m +1 c 

min 
i 

. Conse- 

uently, the power diagram with hybrid capacity constraints sat- 

sfies that the capacity of each site with fixed-value capacity con- 

traint is equal to its preset value, and the capacities of sites 

ith interval capacity constraints are located in its preset inter- 

als. In particular, the HCCCPD degenerates to a Variable Capacity- 

onstrained Centroidal Power Diagram (VCCCPD) when all sites are 

onstrained to intervals. Then, similar to [10] , the kernel problem 

f HCCCPD is to minimize the total cost: 

min Q( X , W ) = 

n ∑ 

i =1 

∫ 
p i 

|| x − x i || 2 ρ( x ) d x 

s.t. m i = | p i | = c i , i = 1 , 2 , ..., m 

c max 
i 

≥ m i = | p i | ≥ c min 
i 

, i = m + 1 , m + 2 , ..., n 

(6) 

In what follows, we introduce our iterative algorithm for pro- 

ressively computing the HCCCPD. Similar to the algorithms pro- 

osed by de Goes et al. [16] and Xin et al. [18] , the weight opti-

ization and site optimization are separated in the optimization 
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Fig. 1. Relationship of the weight of the site x i and variation distance �x i of the 

equal power distance line. 
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rocess. Due to the existing of these sites with interval capacity 

onstraints, the weight optimization of sites with fixed-value ca- 

acity constraints and interval capacity constraints are also sepa- 

ated. Specifically, there are three key operations in our iterative 

lgorithm: (1) optimizing the suitable weights of sites with inter- 

al capacity constraints; (2) finding the optimal weights of sites 

ith fixed-value capacity constraints by Newton’s method; and (3) 

oving each site to the mass center of its corresponding power 

ell by Lloyd’s method. 

.2. Weight optimization 

.2.1. Interval capacity constraint 

For these sites associated with interval capacity constraints, 

he power diagram satisfies that the capacity of site x i is located 

n the capacity-constrained interval [ c min 
i 

, c max 
i 

] , that is, c min 
i 

≤
 i = 

∫ 
p i 

ρ( x ) d x ≤ c max 
i 

, i = m + 1 , ..., n . Based on the false-position

ethod proposed by Balzer [14] , we introduce a novel method, 

alled weight evaluated method, to optimize the capacities of these 

ites with interval capacity constraints. 

As shown in Fig. 1 , let l i j denote the distance between the site

 i and the equal power distance line, and �w i = w 

′ 
i 
− w i > 0 in-

icate the variation of w i . The variation distance �x i of the equal 

ower distance line satisfies that: l 
′ 
i j 

= l i j + �x i after changing the 

eight w i of the site x i . Zheng et al. [19] provide the calculation 

ormula between �x i and �w i (�w i > 0) as follow: 

x i = 

∥∥∥ w 

′ 
i 
− w i 

2 ‖ x j − x i ‖ 

2 
( x j − x i ) 

∥∥∥ = 

�w i 

2 d i j 

(7) 

here d i j is the Euclidean distance of x i and x j . 

It can be observed from Fig. 1 that the variation of the site 

apacity is closely related to the variation distance. However, the 

istances between neighboring sites and the site x i are not the 

ame, and even with the equal power distance line the variation 

istances are different. For the distant neighbor sites, the variation 

istances may be small, which are usually very large for the near 

eighbor sites. A large variation distance may cause the power 

ells of the near neighbor sites to be empty, which will affect the 

tability of the power diagram construction. Therefore, the varia- 

ion of weight �w i can be calculated according to the distance 

 i from the nearest neighbor site: �w i = 2 d i · �x i , thereby elim-

nating the possibility that the power cell is empty during the 

ptimization process. Consequently, for these sites with interval 

apacity constraints, updating the weight of the site whose ca- 

acity is less than its preset capacity-constrained interval using 

 = w + 2 d · �x , and optimizing the weight of the site whose
i i i i 

110 
apacity is greater than its preset capacity-constrained interval us- 

ng w i = w i − 2 d i · �x i . The process is repeated until the capacity

f each site is within the preset capacity-constrained interval. The 

rocedure of the weight evaluated algorithm is given as follow: 

lgorithm 1 Weight Evaluated Algorithm. 

nput: sites X v , capacity constraints C v . 

utput: VCCPD 

1: repeat 

2: if there are sites with a capacity less than the left value 

of its preset constrained interval then 

3: Update its weight w i = w i + 2 d i · �x i 
4: end if 

5: if there are sites with a capacity greater than the right 

value of its preset constrained interval then 

6: Update its weight w i = w i − 2 d i · �x i 
7: end if 

8: Construct the power diagram 

9: until capacities of all sites are within the preset capacity- 

constrained intervals 

0: return VCCPD 

.2.2. Fixed-value capacity constraint 

For these sites associated with the preset fixed capacity- 

onstrained values, the power diagram strictly satisfies that the ca- 

acity of each site x i meets to the preset value c i , that is, m i =
 

p i 
ρ( x ) d x = c i , i = 1 , 2 , ..., m . According to Eq. (6) , the fixed-value

apacity-constrained part in HCCCPD is to minimize the following 

otal cost: 

Q( X , R ) = 

m ∑ 

i =1 

∫ 
p i 

|| x − x i || 2 ρ( x ) d x 

s.t. m i = | p i | = c i , i = 1 , 2 , ..., m 

(8) 

urenhammer et al. further prove that the optimal power diagram 

an be found by extremizing [10] : 

 ( X , W ) = 

m ∑ 

i =1 

∫ 
p i 

|| x − x i || 2 ρ( x ) d x −
m ∑ 

i =1 

w i (m i − c i ) (9) 

e Goes et al. [16] use Newton’s method to find the optimal weight 

 to meet the preset capacity constraints while fixing X . The gra- 

ient of F ( X , W ) in Eq. (9) w.r.t. w i can be shown as: 

∇ w i 
F ( X , W ) = c i − m i 

∇ w i 
m j = −ρ i j 

2 

·
| e ∗

i j 
| 

| e i j | 
(10) 

here e i j denotes the regular edge between two adjacent sites x i 
nd x j , e ∗

i j 
represents the dual edge separating the power cell p i 

nd p j , ρ i j refers the average value of the field ρ( x ) over e ∗
i j 

. The

essian matrix of F ( X , W ) in Eq. (9) can be computed based on

q. (10) . Consequently, Newton’s method can be also applied to 

ptimize the weights of these sites with fixed-value capacity con- 

traints in HCCCPD. The procedure of Newton’s method is given in 

lgorithm 2 . 

.3. Site optimization 

As mentioned above, by imposing the centroidal constraint to 

he HCCPD, a HCCCPD can be obtained, in which each site is lo- 

ated in the mass center of its corresponding power cell. Bourne 

t al. [6] propose Lloyd’s method can be used to compute the CPD. 

ence, Lloyd’s method is also applied in our iterative algorithm to 
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Fig. 2. The procedures of the proposed iterative algorithm for computing HCCCPD. (a) the weight evaluated algorithm; and (b) our proposed HCCCPD algorithm. 

Algorithm 2 Newton’s Algorithm. 

Input: sites X f , capacity constraints C f . 

Output: CCPD 

1: repeat 

2: Compute the gradient and the hessian matrix of F ( X , W ) 

based on Eq. (10) 

3: Optimize the weights of sites X f 

4: Construct the power diagram 

5: until ‖∇ W 

F ( X , W ) ‖ < 10 −12 

6: return CCPD 
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Algorithm 3 HCCCPD Algorithm. 

Input: domain �, density ρ , number of points n , capacity con- 

straints C = { C f , C v } , and a threshold ε as termination condi- 

tion. 

Output: HCCCPD 

1: Initialization: set k = 0 , and X = { X f , X v } to be n randomly 

generated sites 

2: repeat 

3: Call Algorithm-1 to optimize the weights of sites X v to 

meet the interval capacity constraints 

4: Call Algorithm-2 to optimize the weights of sites X f to 

meet the fixed-value capacity constraints 

5: Compute the mass centers of power regions 

6: Move the sites to their respective mass centers using Llo- 

yd’s method 

7: k = k + 1 

8: until δx ≤ ε
9: return HCCCPD 

3

s

g

a

m

t

s

v

s

s

c

a

m

w

ove each site to its mass center. The centroid error δx can be 

omputed in each iteration as follow: 

x = max 
{
δx 1 , δx 2 , ..., δx n 

}
(11) 

here δx i = ‖ x i − x ∗
i 
‖ 2 denotes the squared distance between x i 

nd the mass center x ∗
i 

of its corresponding power cell. Then, the 

nal power diagram is obtained if the centroid error satisfies the 

ermination condition. Otherwise, Lloyd’s method is employed to 

ptimize the site, and the next iteration is performed. 

.4. Iterative algorithm 

Our iterative algorithm works as shown in Fig. 2 . First, we start 

rom a feasible site set X 

(0) randomly generated in the domain �, 

nd the weights of all sites are set to be equal. Assuming that X 

(k ) 
,

he sites in the k -th iteration, is a feasible site set as well, W 

(k ) is

he weights in the k -th iteration. Next, we use the weight evalu- 

ted method to update the weights of sites with interval capacity 

onstraints, and we compute the gradient and hessian matrix of 

 ( X , W ) based on Eq. (9) , and employ Newton’s method to update

he weights of sites with fixed-value capacity constraints. Mean- 

hile, Lloyd’s method is applied to update X 

(k ) to X 

(k +1) . Thus, 

he ( k+ 1)-th iteration yields the next site set X 

(k +1) and weights 

 

(k +1) . This iterative process is repeated until the termination con- 

ition is satisfied. The pseudocode of our algorithm is given as fol- 

ow: 
111 
.5. Preprocessing 

The calculation of the hessian matrix of F ( X , W ) is a crucial 

tep in the weight optimization using Newton’s method. In our al- 

orithm, due to the combination of fixed-value capacity constraints 

nd interval capacity constraints, the hessian matrix of F ( X , W ) 

ay be irreversible, which may cause Newton’s method to fail in 

he weight optimization process. To this end, we preprocess the 

ite set X before the optimization to separate the sites with fixed 

alue capacity constraints and those with interval capacity con- 

traints. In this way, the irreversible situation of the obtained hes- 

ian matrix of F ( X , W ) can be effectively avoided. 

In addition, the weight optimization of fixed capacity- 

onstrained sites and interval capacity-constrained sites are sep- 

rated in our iterative algorithm. Considering density field, there 

ay be empty power cells during the weight optimization process 

hen fixing the weights of interval capacity-constrained sites. To 



L. Zheng, Y. Yao, W. Wu et al. Computers & Graphics 97 (2021) 108–116 

Table 1 

The preset capacity constraints of HCCCPD in our experiments. 

HCCCPD Capacity-constrained 

values 

Capacity-constrained intervals 

Fig. 3 (a) 0.020 (45) [0.019, 0.021] (5) 

Fig. 3 (b) 0.016 (45) [0.055, 0.057] (5) 

Fig. 3 (c) 0.018 (45) [0.013, 0.015] (3), [0.0715, 0.0735] (2) 

Fig. 3 (d) 0.010 (90) [0.0095, 0.0105] (10) 

Fig. 3 (e) 0.008 (90) [0.0275, 0.0285] (10) 

Fig. 3 (f) 0.009 (90) [0.0055, 0.0065] (5), [0.0315, 0.0325] (5) 
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Fig. 3. The computational results of our proposed HCCCPD algorithm for 50 sites 

and 100 sites with uniform density. The first row: results for 50 sites. The second 

row: results for 100 sites. The first column: the power diagrams with the default 

capacity constraints. The second column: the power diagrams with large capacity- 

constrained intervals. The last column: the power diagrams with unequal capacity- 

constrained intervals. 

Fig. 4. The computational results under different values of the proportion α. (a) α

= 25%; (b) α = 50%; (c) α = 75%; and (d) α = 100%. 

Fig. 5. The computational results under different values of the interval proportion 

β . (a) β = 5%; (b) β = 10%; (c) β = 15%; and (d) β = 20%. 

t

v

c

s

β

his end, the initialized power diagram should approximately sat- 

sfy the density distribution. That is, all sites are equipped with 

arge interval capacity constraints, and the weight evaluated algo- 

ithm is applied to optimize the power diagram. 

. Experiment 

In this section, we present the computational results to verify 

he efficiency of our iterative algorithm. We implement our algo- 

ithm in C++, and all the experiments are performed on a com- 

uter with 3.6 GHz Intel (R) Core (TM) i7-9700K CPU and 16 GB 

emory. 

First of all, the basic test is performed in a squared domain 

ith a side length of 1, centered at (0.5, 0.5). As mentioned in de 

oes et al. [16] , it usually takes 3–5 iterations to obtain the resid-

al of capacity constraints within an accuracy of 10 −12 . Therefore, 

he termination condition of Newton’s method is set to 10 −12 . Fur- 

hermore, based on the optimal results in [19] , the variation �x i 
s set to 0.05, and the termination condition of Lloyd’s method 

s set to 10 −6 . The proportion of the number of interval capacity- 

onstrained sites to the total number of sites is set to α = 10% . In

ddition, the default capacity-constrained interval is set to 
[
m − β

2 ·
 , m + 

β
2 · m 

]
, where m denotes the average capacity of each site, 

hat is, m = 

∫ 
� ρ( x ) d x 

n , and the interval proportion β is set to 10%. 

.1. Constraint analysis 

.1.1. Result analysis 

In this section, a comprehensive of computational experiments 

re conducted to verify the effectiveness of our proposed HCCCPD 

lgorithm. The total number of sites is selected from n ∈ { 50 , 100 } ,
here the number of interval capacity-constrained sites is α = 

0% , and the interval proportion is β = 10% . For simplication, the 

apacities of sites with fixed-value capacity constraints are equal, 

nd the density ρ( x ) is selected as a uniform density, that is, 

( x ) = 1 . 

Three different capacity-constrained intervals are considered in 

ur experiments, as shown in Table 1 . Fig. 3 illustrates the com- 

utational results of our proposed HCCCPD algorithm under dif- 

erent capacity constraints, where the blue and green regions are 

he corresponding power cells of sites with interval capacity con- 

traints. From the results shown in Fig. 3 , it can be observed that

ur proposed HCCCPD algorithm can effectively compute the cen- 

roidal power diagram with hybrid capacity constraints. 

.1.2. Parameter analysis 

To illustrate the reliability of our proposed HCCCPD algorithm, 

e study the effect of the parameter α, which the proportion 

f the number of interval capacity-constrained sites to the to- 

al number of sites. In our experiments, the total number of 

ites are set to 100, and the proportion α is selected from α ∈ 

 25% , 50% , 75% , 100% } . For simplification, the values of fixed-value

apacity-constrained sites are equal, and the intervals of interval 

apacity-constrained sites are set to the default values. Fig. 4 shows 
112 
he computational results with uniform density under different 

alues of the proportion α, where the blue regions represent the 

orresponding power cells of these interval capacity-constrained 

ites. 

Furthermore, we analysis the effect of the interval proportion 

on the computational results. In this experiment, the propor- 
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Fig. 6. Linear and non-linear densities in our experiments. (a) ρ(x, y ) = 0 . 1 + x ; (b) ρ(x, y ) = x 2 + y 2 ; and (c) ρ(x, y ) = 1 . 8 × e −[(x −0 . 25) 2 +(y −0 . 25) 2 ] . 

Fig. 7. The computational results of our proposed HCCCPD algorithm with three 

different densities. The first row: results for 50 sites. The second row: results for 

100 sites. The first column: results with linear density. The second column: results 

with non-linear density. The last column: results with Gaussian density. 
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Table 2 

Comparison of computational time (in seconds) between two methods Xin et al. 

[18] and ours. 

Method Sites Density 

UD LD NLD 

Xin et al. [18] 1 50 4.001 4.212 4.760 

200 14.107 22.412 28.319 

Ours ( α = 0%) 1 50 2.204 3.039 2.871 

200 11.097 30.252 35.125 

Ours ( α = 100%) 2 50 0.845 1.234 1.507 

200 7.209 15.124 17.998 

1 Power diagrams with fixed-value capacity constraints (CCCPD). 
2 Power diagrams with interval capacity constraints (VCCCPD). 
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ion α is set to 90% , and the rest sites are set to fixed-value

apacity constraints. The interval proportion β is selected from 

∈ { 5% , 10% , 15% , 20% } . Fig. 5 illustrates the computational re-

ults with uniform density under different values of the interval 

roportion β, where the yellow regions denote the corresponding 

ower cells of these fixed-value capacity-constrained sites. 

From the results shown in Figs. 4 and 5 , we can observe that

ur proposed HCCCPD algorithm is effective under different pro- 

ortion α, and the computational results are different under var- 

ous interval proportions. Particularly, when α = 100%, the cen- 

roidal power diagram with hybrid capacity constraints degener- 

tes into a VCCCPD. 

.2. Density analysis 

In order to verify the effectiveness of our proposed iterative al- 

orithm in this paper, three types of densities are considered: Lin- 

ar Density (LD), Non-Linear Density (NLD), and Gaussian Density 

Gaussian). It is worth noting that Gaussian density is a special 

ase of non-linear density, as illustrated in Fig. 6 . 

In the experiment, the number of total sites is set to n ∈ 

 50 , 100 } . The proportion of the number of interval capacity-

onstrained sites to the total number of sites is set to α = 10% , and

he capacity-constrained intervals are set to the default intervals. 

ig. 7 shows the computational results of our proposed HCCCPD 

lgorithm with three different densities, where the blue regions 

enote the corresponding power cells of these sites with interval 

apacity constraints. It can be observed that our proposed HCCCPD 

lgorithm can be well adapted to the general continuous density, 

nd the results obtained are satisfactory. 

.3. Performance analysis 

.3.1. Computational time 

The weight evaluated method and Newton’s method are applied 

o update the weights in our proposed HCCCPD algorithm. We 

alculate the computational time of our proposed HCCCPD algo- 
113 
ithm under various conditions. Four types of densities are experi- 

ented: uniform density (UD), linear density (LD), non-linear den- 

ity (NLD), and Gaussian density (Gaussian). In our experiments, 

he interval proportion β is set to 10%, when analyzing the effect 

f the proportion α, and the proportion α is selected as 50% when 

esting the effect of the interval proportion β . The computational 

erformance of our proposed HCCCPD algorithm is illustrated in 

ig. 8 . 

According to the results shown in Fig. 8 , we can observe that as 

he total number of sites raises, the computational time of our pro- 

osed HCCCPD algorithm also increases. On the one hand, when 

he number of interval capacity constrained sites increases, New- 

on’s method is required to re-optimize the weights of fixed-value 

apacity constrained sites after the weight evaluated algorithm. 

herefore, more computational time is required to compute the 

CCCPD as the proportion increases. Besides, the interval propor- 

ion β also has a significant impact on the performance of the 

lgorithm. When the capacity-constrained intervals are too small, 

he weight evaluated algorithm requires more iterations to opti- 

ize the weights of these sites with interval capacity constraints, 

nd much more time consumption is required to compute the HC- 

CPD (e.g., β ≤ 2 . 5% ). 

.3.2. Comparison 

To further evaluate our proposed HCCCPD algorithm, we com- 

are the experimental results obtained by our proposed algorithm 

ith those obtained by the CCCPD algorithm proposed by Xin et al. 

18] . To maintain consistency in these experiments, the squared re- 

ion is selected as the default domain. In addition, the termination 

ondition for Newton’s method is set to 10 −12 , and 10 −6 is se- 

ected for Lloyd’s method. Three types of densities are selected in 

ur experiments: Uniform Density (UD), Linear Density (LD), and 

on-Linear Density (NLD), as shown in Fig. 6 . The computational 

erformance is presented in Table 2 , where the interval proportion 

is set to 5%. Especially, when the proportion α is set to 100%, 

he HCCCPD degenerates to a VCCCPD, and the HCCCPD becomes a 

CCPD when the proportion α is 0%. The computational results of 

wo methods are illustrated in Fig. 9 . 

According to the computational results shown in Fig. 9 , we can 

bserve that our proposed HCCCPD algorithm is also effective for 
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Fig. 8. The computational performance of our proposed HCCCPD algorithm under various conditions. (a) the relationship between the computational time and the proportion 

α, and (b) the relationship between the computational time and the interval proportion β . 

Fig. 9. The computational results obtained by our proposed HCCCPD algorithm and the algorithm proposed by Xin et al. [18] . The first row: results obtained by the algorithm 

proposed by Xin et al. [18] . The second row: results obtained by our proposed HCCCPD algorithm with α = 0%. The last row: results obtained by the HCCCPD algorithm with 

α = 100% and β = 5%. The first column: results for 50 sites with linear density. The second column: results for 50 sites with non-linear density. The third column: results 

for 200 sites with linear density. The last column: results for 200 sites with non-linear density. 
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ome special power diagrams, such as CCCPD and VCCCPD. When 

he capacities of sites are constrained with intervals, that is, a VC- 

CPD, the results obtained by the two algorithms are similar, but 

he computational time of our proposed HCCCPD algorithm is less 

han the CCCPD algorithm in [18] . Since the CCCPD algorithm con- 

erges super-linearly, while Lloyd’s method only converges linearly, 

ur proposed HCCCPD algorithm is inferior to the CCCPD algorithm 

hen computing the CCCPD. However, our proposed HCCCPD algo- 

ithm aims to compute the power diagrams with hybrid capacity 

onstraints, and the purely CCCPD is just a special case. 

.4. More results 

.4.1. Complex domain 

The domain is set to a squared region with a side length of 

 in the previous experiments. To demonstrate the computational 
114 
esults of our proposed HCCCPD algorithm in more complex do- 

ains, four different complex domains with uniform density are 

elected: triangle domain, non-convex domain, star domain, and 

ircular domain. In our experiment, the total number of sites are 

00, where the proportion α is set to 10%, and the interval propor- 

ion β is 10%. The computational results of our proposed HCCCPD 

lgorithm under various domains are presented in Fig. 10 , where 

he blue regions are the corresponding power cells of interval ca- 

acity constrained sites. It can be observed from Fig. 10 that our 

roposed HCCCPD algorithm is versatility, and reliable results can 

lso be obtained for other complex domains. 

.4.2. More sites 

We further study the effectiveness of our proposed HCCCPD 

lgorithm in the case of more sites. The total number of sites are 

et from n ∈ { 20 0 , 50 0 , 10 0 0 } , where half of the sites are set to
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Fig. 10. The computational results of our proposed HCCCPD algorithm under vari- 

ous domains. (a) triangle domain; (b) non-convex domain; (c) star domain; and (d) 

circular domain. 

Fig. 11. The computational results of our propsed HCCCPD algorithm for different 

numbers of sites. (a) 200 sites; (b) 500 sites; and (c) 10 0 0 sites. 
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Fig. 12. The computational results for 25 service centers in a certain city. (a) den- 

sity function; and (b) layout result. 

Table 3 

The detail data of the layout result in Fig. 12 (b). 

Capacity constraints Centers location Optimized capacity 

[39 . 0 0 0 , 41 . 0 0 0] (13.063, 46.141) 39.007 

50.000 (13.802, 31.389) 50.000 

50.000 (13.464, 49.749) 50.000 

50.000 (20.766, 37.523) 50.000 

40.000 (14.609, 18.507) 40.000 

[38 . 50 0 , 41 . 50 0] (21.704, 27.546) 40.421 

50.000 (19.176, 46.244) 50.000 

50.000 (13.487, 56.685) 50.000 

50.000 (20.564, 56.647) 50.000 

40.000 (25.779, 17.644) 40.000 

[38 . 0 0 0 , 42 . 0 0 0] (30.150, 57.138) 41.060 

50.000 (27.173, 42.654) 50.000 

60.000 (30.220, 31.935) 60.000 

40.000 (41.220, 31.255) 40.000 

60.000 (25.207, 51.343) 60.000 

[57 . 50 0 , 62 . 50 0] (37.417, 20.801) 58.657 

40.000 (34.748, 39.464) 40.000 

60.000 (34.365, 48.898) 60.000 

50.000 (43.116, 41.257) 50.000 

50.000 (39.815, 56.585) 50.000 

[37 . 0 0 0 , 43 . 0 0 0] (44.731, 50.197) 40.855 

50.000 (50.975, 19.848) 50.000 

40.000 (54.256, 45.058) 40.000 

50.000 (53.089, 55.609) 50.000 

50.000 (52.384, 33.366) 50.000 

∗ The capacities represent the population (in thousand) of service centers. 
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nterval capacity constraints, and the remaining sites are set to 

xed-value capacity constraints. The domain is set to the default 

egion with uniform density, and the interval proportion β is 

et to. Fig. 11 shows the computational results of our proposed 

CCCPD algorithm for different numbers of sites, where the blue 

egions are the corresponding power cells of the interval capacity 

onstrained sites. The results shown in Fig. 11 demonstrate that 

ur proposed HCCCPD algorithm is effective to obtain the HCCCPD 

ven with more sites. 

. Application 

In this section we illustrate the feasibility of our proposed HCC- 

PD algorithm for the service region computation in the LAP [20] . 

he traditional LAP is to locate a set of facilities in a market re-

ion to meet the demands of customers. It is natural to use the 

VT algorithm to determine the location and the service region of 

ach facility [21,22] , but the capacity of each facility is difficult to 

eet the predetermined value. Therefore, some weighted Voronoi 

iagrams are used to investigate the properties of allocation de- 

isions, including multiplicatively weighted Voronoi diagram and 

ower diagram [13,14] , in which the capacities of facilities are def- 

nite values. However, it is difficult to determine the capacity of 

ach facility in advance, and there may be some facilities whose 

apacity is set to an interval in practical applications. We adpot 

ur proposed HCCCPD algorithm to compute the service regions of 

acilities in the LAP. 

The distribution of urban population is crucial to the location of 

ervice centers. First of all, we collect census data online to obtain 

ample data of a certain city, which are mapped to a squared area 

ith a side length of 50, centered at (35, 35). Then, the Newling 

ode is adopted to simulate the population density of this city. 

he density function is shown in Fig. 12 (a). 

(x, y ) = 27931 × e −0 . 002 ×[(x −29) 2 +(y −45) 2 ] −0 . 001 ×[(x −29) 2 +(y −45) 2 ] 
1 
2 
115 
(12) 

Assume that the total population in this city is 1.2 million, in 

he experiment, 25 service centers are to be located in this city, 

nd two types of capacity constraints are considered: fixed-value 

apacity constraints and interval capacity constraints, as shown in 

he first column in Table 3 . The final layout configuration of 25 ser- 

ice centers is presented in Fig. 12 (b), where the red dots denote 

he location of service centers, the facets formed by segments rep- 

esent the service regions of service centers, and the blue regions 

re the corresponding service regions of centers with interval ca- 

acity constraints. The detail data of service centers are illustrated 

n Table 3 . The result in Fig. 12 and Table 3 prove that our pro-

osed HCCCPD algorithm can effectively solve the LAP with hybrid 

apacity constraints. 

. Conclusions 

In this paper, a novel power diagram is introduced, called the 

ybrid capacity-constrained centroidal power diagram. we propose 

 weight evaluated method to adjust the weights of sites to meet 

he variable capacity constraints. On this basis, an iterative algo- 

ithm is developed to compute the power diagrams with hybrid ca- 

acity constraints. On the one hand, the weight evaluated method 

s used to update the weights of interval capacity-constrained 

ites, and Newton’s method is applied to optimize the weights of 

xed-value capacity-constrained sites. On the other hand, Lloyd’s 

ethod is employed to move the sites to the mass centers of its 

orresponding power cells. The experimental results prove that our 



L. Zheng, Y. Yao, W. Wu et al. Computers & Graphics 97 (2021) 108–116 

p

a

m

i  

t

t

D

c

i

C

v

q

v

W

X

i

a

A

e

F

R

 

 

 

 

 

 

 

 

[

 

 

 

 

[

[

[  
roposed HCCCPD algorithm can effectively com pute the power di- 

grams with hybrid capacity constraints. 

Limitation and future work. In our proposed HCCCPD algorithm, 

ore time consumption is required when the interval proportion β
s too small, as shown in Fig. 8 (b). In our future work, we will ex-

end our algorithm to improve its computational performance for 

he power diagrams with small interval capacity constraints. 
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