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Abstract. Road information plays a fundamental role in many appli-
cation fields, while satellite images are able to capture a large area of
the ground with high resolution. Therefore, extracting roads has become
a hot research topic in the field of remote sensing. In this paper, we
propose a novel semantic segmentation model, named IDANet, which
adopts iterative D-LinkNets with attention modules for road extraction
from high-resolution satellite images. Our road extraction model is built
on D-LinkNet, an effective network which adopts encoder-decoder struc-
ture, dilated convolution, and pretrained encoder for road extraction
task. The attention mechanism can be used to achieve a better fusion
of features from different levels. To this end, a modified D-LinkNet with
attention is proposed for more effective feature extraction. With this
network as the basic refinement module, we further adopt an iterative
architecture to maximize the network performance, where the output of
the previous network serves as the input of the next network to refine the
road segmentation and obtain enhanced results. The evaluation demon-
strates the superior performance of our proposed model. Specifically, the
performance of our model exceeds the original D-LinkNet by 2.2% of the
IoU on the testing dataset of DeepGlobe for road extraction.

Keywords: Road extraction · Semantic segmentation · Convolutional
neural network · Attention mechanism · Iterative architecture

1 Introduction

Accurate and real-time road information update is of great significance in many
applications, such as urban planning and construction, vehicle navigation, nat-
ural disaster analysis, etc. Benefiting from the development of remote sensing
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technology, continuous ground observations via remote sensing satellites have
been achieved, and a large number of high-resolution satellite images can be
easily obtained, providing a reliable and abundant data source with rich spatial
structure and geometric texture for extracting various ground targets.

Traditional methods aim to detect roads by carefully designing multi-level
and multi-scale features to distinguish between the road and non-road. However,
it is challenging to choose effective features, especially in complex heterogeneous
regions where surroundings such as buildings, vegetation are all contextual fea-
tures that also affect the original features of the road. Recently, with the rise
of deep learning, convolutional neural networks (CNN) have shown consider-
able development in feature extraction and have been applied in many computer
vision tasks, including image recognition [11] and semantic segmentation [14].
The “era of deep learning” also popularizes the use of deep neural networks in the
field of remote sensing, which has enabled effective automatic road extraction.

CNN-based approaches have been proposed for extracting roads, and remark-
able improvements have been made. Most of them consider road extraction as
semantic segmentation. However, this problem is far from solved. On the one
hand, ground information provided by satellite images has increased dramati-
cally with altitude, which reduces the differences of ground targets. On the other
hand, roads often have differences in width, color, and structure. Surroundings
usually cause shadow and occlusion issues. The above-mentioned has undoubt-
edly increased the difficulty of road extraction with inherent complexity and
variability. CNN-based methods extract road parts with some important parts
missed and poor connectivity. The road is sparser compared to other ground tar-
gets, and the imbalance of categories increases the difficulty of semantic segmen-
tation. Key features can not be well extracted from various feature information.

To this end, we propose a novel semantic segmentation model named IDANet,
which adopts iterative D-LinkNets [20] with attention modules [19] for road
extraction with much better accuracy, connectivity, and completeness than pre-
vious methods. We equip the original D-LinkNet with more advanced dilated
convolution modules, which can further enhance the ability of feature learning.
To fix the issue of category imbalance, a powerful loss function with focal loss [13]
is adopted. We also introduce recent popular attention modules into our model
for more effective feature extraction. Furthermore, we use an iterative architec-
ture to obtain enhanced results. The output of the previous network serves as
the input of the next network to refine the results of semantic segmentation. The
main contributions of our work are summarized as follows:

– A improved encoder-decoder network with attention is introduced as the basic
module of our model, which can significantly improve the results of semantic
segmentation.

– A novel dilated convolution module which has fewer parameters but better
performance than that in original D-LinkNet.

– A novel iterative framework is proposed for road extraction from high-
resolution satellite images, which can further refine and enhance the results
of road extraction.
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2 Related Work

Our work relates to a line of research on semantic segmentation in the field
of deep learning. We refer the reader to the recent survey [8] on semantic seg-
mentation in deep learning for discussions on a variety of methods. CNN has
achieved unprecedented success in many computer vision tasks, which also pro-
vides various powerful tools for semantic segmentation. Fully convolutional net-
works (FCN) [14] has made milestone progress in image segmentation, which
extends the classification at the image level into the pixel level with small storage
and high segmentation efficiency. Since then, various FCN-based methods [2,21]
continuously refresh the record of semantic segmentation. U-Net [16] adopts a
symmetric U-shaped structure, which lays the foundation for the following design
of the segmentation network. To increase the receptive field without information
loss due to decreased resolution, DeepLab [5,6] is based on dilated convolution
and has shown strong abilities to increase the segmentation accuracy.

Inspired by the research of image segmentation, CNN-based methods pro-
vide new chances for road extraction. Excellent works [1] have been proposed for
road extraction. Mattyus et al. [15] develop a variant of FCN using ResNet as an
encoder with a fully deconvolutional decoder to estimate road topology. Zhang
et al. [20] introduce a deep residual U-Net for road extraction. Skip connections
are used to obtain improved performance by information propagation. Bastani
et al. [3] propose RoadTracer to extract road network using an iterative search
process guided by a patch-based CNN decision function. Based on this, Lian
and Huang [12] develop a road network tracking algorithm for road extraction.
Zhou et al. [22] propose D-LinkNet for road semantic segmentation, which con-
tains an encoder–decoder structure with a dilated convolution part in the center.
D-LinkNet achieves obvious improvement in road extraction but retains several
issues concerning road connectivity and recognition. Based on this, Huang et
al. [10] propose D-CrossLinkNet by adding cross-resolution connections in D-
LinkNet. Our proposed model also makes full use of the outstanding extrac-
tion capability of the D-LinkNet architecture. Long-distance spatial information
learning is very important in road extraction. Except for dilated convolution,
attention mechanism [9,18,19] can also achieve good results in global informa-
tion learning. Therefore, we introduce recent popular attention modules [19] into
our model for more effective feature extraction, which could also reduce the loss
of short-distance spatial features caused by dilated convolution.

3 Methodology

3.1 Overview

We propose a novel semantic segmentation model IDANet, which adopts itera-
tive D-LinkNets with attention modules for road extraction from high-resolution
satellite images. The whole network is designed in an iterative architecture, as
shown in Fig. 1, which can strengthen the learning of semantic segmentation by
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Fig. 1. Iterative architecture. IDANet adopts iterative D-LinkNets with attention mod-
ules for road extraction.

fusing the original input and the intermediate result generated in each itera-
tion. IDANet uses D-LinkNet as the basic iteration module, but some effective
modifications have been made. First of all, to enhance the effect of the dilated
convolution, we modify the dilation module in the original D-LinkNet to make
better use of feature information at different levels. We also introduce attention
modules into our model for more effective feature extraction. Finally, a powerful
loss function with focal loss is adopted to fix the issue of category imbalance.
The iteration module is repeated to achieve self-correction and further improve
the segmentation output. Therefore, IDANet can extract road information with
much better accuracy, connectivity, and completeness than previous methods.

3.2 Basic Iteration Module

D-LinkNet is a classical encoder-decoder network that receives high-resolution
images as input. The encoder part and decoder part of our model remain the
same as the original D-LinkNet, so our model can also work with high-resolution
images. The encoder part reduces the resolution of the feature map through the
pooling layers, if an image of size 1024 × 1024 goes through the encoder part,
the output feature map will be of size 32 × 32. The decoder part uses several
transposed convolution layers to do upsampling, restoring the resolution of the
feature map from 32 × 32 to 1024 × 1024, as shown in Fig. 2.

Dilation Module. Having a large receptive field is important for road extrac-
tion, as roads in most satellite images span the whole image with some nat-
ural properties such as narrowness, connectivity, complexity. The highlight of
D-LinkNet is its focus on increasing the receptive field of feature points by
embedding dilation convolutions in the network without decreasing the reso-
lution of feature maps. In the original D-LinkNet, different dilated convolutions
are stacked both in cascade mode and parallel mode. This will inevitably lead
to the loss of short-distance spatial information due to the “holes” introduced
in the computation of dilated convolution. A better approach is to use the orig-
inal input to further strengthen the output of the dilated convolution to achieve
the supplement of information features and decrease the information loss in the
computation of dilated convolution. Therefore, we only keep the backbone dila-
tion network where the dilation rates of the stacked dilated convolution layers
are 1, 2, 4, 8, respectively, and discard other parallel branch networks. Inspired
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Fig. 2. The basic iteration module including the dilation module and attention module.

by the identity mapping, we also add identity mapping between different dilated
convolution layers, as shown in Fig. 3(a).

Attention Module. Upsampling can supplement some lost image information,
but it is certainly incomplete. Therefore, the feature map from upsampling of
the decoder part and which from the corresponding layer of the encoder part
are concatenated together by skip connection which bypasses the input of each
encoder layer to the corresponding decoder. This operation can bring in the fea-
tures of lower convolution layers which contain rich low-level spatial information.
To achieve better fusion between these two feature maps, we introduce attention
modules into our model. We choose recent popular attention architecture CBAM
(Convolutional Block Attention Module) [19] as our attention module, as shown
in Fig. 3(b). CBAM can achieve good results in global and long-distance spa-
tial information learning by combining the channel attention module and spatial
attention module. Specifically, the channel attention module squeezes the spatial
dimension of the input feature map and focuses on which channels are meaning-
ful. The spatial attention module generates a spatial attention map by utilizing
the inter-spatial relationship of features and focuses on where is an informative
part given an input image. Then these two attention maps are multiplied to the
input feature map for adaptive feature refinement.

Loss Function. D-LinkNet uses BCE (Binary Cross Entropy) and dice coeffi-
cient loss as loss function. Binary Cross-Entropy performs pixel-level classifica-
tion and defined as:

LBCE(y, ŷ) = −(ylog(ŷ) + (1 − y)log(1 − ŷ)) (1)
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Fig. 3. Dilation module(a) and attention module(b) used in IDANet.

Here, ŷ is the predicted value. Dice coefficient loss is widely used to calculate
the similarity between two images and defined as:

DL(y, p̂) = 1 − 2yp̂ + 1
y + p̂ + 1

(2)

Here, 1 is added to ensure that the function is well defined when y = p̂ = 0.
However, we have a category imbalance problem, since most of the areas in

satellite images are non-road pixels (more than 90% of the area pixels are non-
road pixels), which also causes that it is difficult to train sparse samples and
seriously affect the training effect. To this end, the focal loss [13] is introduced.
It can not only alleviate the imbalance of categories but also down-weight the
contribution of easy-training examples and enable the model to focus more on
learning hard-training samples. Focal Loss is defined as:

FL(pt) = −αt(1 − pt)γ log(pt) (3)

pt =
{

p, if y = 1
1 − p, otherwise

(4)

Here, γ > 0 and 0 ≤ αt ≤ 1. Since the real goal of image segmentation is
to maximize IoU metrics, and dice coefficient is calculated based on IoU, dice
coefficient loss is especially suitable for the optimization of IoU. Therefore, we
adopt focal loss and dice coefficient loss as our loss function:

L = αfFL + αdDL (5)

Here, αf and αd are weights for focal loss and dice coefficient loss, respectively.

3.3 Iterative Architecture

Using the above modified D-LinkNet as the basic module, we adopt an iterative
architecture to refine the road segmentation and obtain enhanced results, as
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shown in Fig. 1. From the perspective of data processing, our iterative algorithm
can be regarded to enhance the post-processing of output results. In our iterative
architecture, the output of the previous network serves as the input of the next
network to refine the road segmentation and obtain enhanced results. The input
image of our model is expressed as I, the input of the ith iteration is expressed
as Ii, and the output of the ith iteration is expressed as Oi. Each iteration step
can be defined as follows:

D-LinkNet(Ii+1) −→ Oi+1, i = 1, ..., n (6)

Ii+1 is the splicing result of I and Oi along the channel in the tth basic
iterative module, which is defined as follows:

Ii+1 = concat(I,Oi), i = 1, ..., n (7)

where n is the number of basic iteration modules. The iterative architecture
integrates information through repeated iterative enhancement learning of the
splicing results of D-LinkNet output results and original images, which can fur-
ther refine and enhance the results of road extraction. The proposed iterative
architecture is very useful and efficient. The training time for a single iteration
module is decreased with the iteration increasing, while impressive performance
can be obtained. It contributes about 0.5% at IoU in our experiment.

4 Experiment

4.1 Datasets

We have performed our experiments on two diverse datasets: 1) the DeepGlobe
dataset [7] and 2) the Beijing-Shanghai dataset [17], as shown in Fig. 4. The
DeepGlobe dataset consists of 6226 annotated satellite images with an image
resolution of 1024 × 1024. Among them, 5226 images are used for training, and
the left is used as the testing set. There are 348 satellite images (298 Beijing
maps and 50 Shanghai maps) in the Beijing-Shanghai dataset. Each image has a
size of 1024×1024. During the experiments, 278 images are used for training, and
the left is used as the testing set. For these benchmark datasets, the road labels
on the image are manually marked. Specifically, roads are labeled as foreground,
and other objects are labeled as background.

4.2 Implementation Details

We use PyTorch to implement and train our networks. All models are trained
and tested on an NVIDIA RTX 2080TI with 11 GB memory. Limited by the
hardware, we can only train IDANet step by step, which means that the results
of the previous network serve as the training data for the next network. During
the training process, we find that only the first iteration network takes about 200
epochs to converge, and the following iteration modules have faster convergence
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DeepGlobe Beijing-Shanghai

Fig. 4. Visualization of two benchmark datasets.

with less than 100 epochs. The number of the iteration network is an important
architecture parameter that can affect the final segmentation results. The num-
ber of basic iteration modules is set to n = 3, which is an experimental value
and enables to obtain the final stable segmentation results. For more discussion
and analysis of the iteration number, please refer to Sect. 5.3. In our experiment,
the loss weights for focal loss and dice coefficient loss are empirically set for dif-
ferent datasets to achieve the best results. Specifically, αf = 30 & αd = 1 for the
DeepGlobe dataset and αf = 20 & αd = 1 for the Beijing-Shanghai dataset in
our experiments. We also implement data augmentation similar to D-LinkNet,
which can make full use of the limited amount of training data.

5 Results

Accuracy, Recall, and IoU (Intersection over Union) are commonly used as the
evaluation indicators for semantic segmentation. Specifically, Accuracy is the
ratio of the number of correctly predicted samples to the total number of pre-
dicted samples. Recall is the ratio of the number of correctly predicted positive
samples to the total number of positive samples. IoU refers to the ratio between
the intersection of the road pixels predicted and the true road pixels and the
result of their union. In our experiments, road pixels are labeled as foreground,
and other pixels are labeled as background, so we also adopt Accuracy, Recall,
and IoU to evaluate the segmentation results at the pixel level.

5.1 Comparison of Road Segmentation Methods

To evaluate our model, we select U-Net [16], LinkNet [4], D-LinkNet [22], and
D-CrossLinkNet [10] as competitors. Specifically, U-Net is trained with 7 pool-
ing layers, and LinkNet is trained with pretrained encoder but without dilated
convolution in the center part. We also compare our proposed model with the
non-iterative version of IDANet, namely BaseNet. We have trained these mod-
els on two benchmark datasets. Accuracy, Recall, and IoU of each method on
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Table 1. Comparison results on the testing dataset of different models

Dataset Method Accuracy Recall IoU

DeepGlobe U-Net 0.9652 0.5637 0.5202

LinkNet 0.9779 0.7948 0.6681

D-LinkNet 0.9752 0.8005 0.6700

D-CrossLinkNet 0.9749 0.8011 0.6710

BaseNet 0.9802 0.8066 0.6876

IDANet 0.9813 0.8201 0.6921

Beijing-Shanghai Unet 0.9359 0.7131 0.5478

LinkNet 0.9404 0.7458 0.5800

D-LinkNet 0.9429 0.7282 0.5835

D-CrossLinkNet 0.9431 0.7294 0.5841

BaseNet 0.9419 0.7502 0.5891

IDANet 0.9416 0.7710 0.5948

testing datasets are calculated. The results of these models on different datasets
are shown in Table 1.

For the DeepGlobe dataset, it can be observed that, compared with U-
Net, LinkNet, D-LinkNet, and D-CrossLinkNet, our model (both BaseNet and
IDANet) achieves the best performance in all of evaluation metrics. Both our
BaseNet and IDANet exceed D-LinknNet and D-CrossLinkNet considerably.
Taking the results of D-LinkNet as a baseline, the Accuracy improves 0.61%, the
Recall improves 1.96%, and the IoU improves 2.21%. The experimental results
on the DeepGlobe dataset are shown Fig. 5.

In terms of the Beijing-Shanghai dataset where the amount of data is much
smaller than the DeepGlobe dataset, the results are much poor for all indicators.
Even so, IDANet achieves the best performance in both Recall and IoU. The
Recall and IoU of IDANet are 4.28% and 1.13% higher than the results of
D-LinkNet, respectively. For the results of Accuracy, IDANet is slightly lower
than D-LinkNet’s 0.9429 and D-CrossLinkNet’s 0.9416. This small difference in
Accuracy can be attributed to insufficient training data. Furthermore, Recall and
Accuracy are mutually restricted in general. In the case of small data sets, the
pursuit of high Recall will lead to lower Accuracy, which is a normal phenomenon.
This result can be understood that our method can further improve the Recall
and IoU while maintaining the Accuracy compared with other models.

5.2 Ablation Experiment

This section aims to further certify the effectiveness and universality of the mod-
ules introduced in IDANet, including the dilation module, attention module,
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. Visualization results on the DeepGlobe dataset. From left to right: (a) Satellite
image, (b) Ground truth, (c) U-Net, (d) LinkNet, (e) D-LinkNet, (f) D-CrossLinkNet,
(g) BaseNet, (h) IDANet.

and loss function. Therefore, we have done an ablation experiment on the Deep-
Globe dataset. We only perform one iteration for IDANet as well as other models
derived from IDANet. We first remove the dilation and attention module from
IDANet, denoted as IDANet-D and IDANet-A, respectively. Then we remove
both the dilation and attention module from IDANet, denoted as IDANet-DA.
We denote the network where BCE loss and dice coefficient loss are used to train
our IDANet as IDANet+diceBCE. The results of the ablation experiment are
shown in Table 2. For the DeepGlobe dataset, IDANet outperforms other derived
versions in terms of the Accuracy and IoU in the ablation experiment. For the
results of Recall, the performance of IDANet is slightly lower than IDANet-
Dilation. As discussed in Sect. 5.1, Recall and Accuracy are mutually restricted,
and high Accuracy results in lower Recall, which means that the network is
more capable of correcting errors. Compared with IDANet+diceBCE, our loss
function can alleviate the imbalance of training samples and focus on learning
hard-training samples, which can effectively improve the segmentation results.
Experiments show that the dilation module, attention module, and loss function
are effective for the semantic segmentation of road extraction.

5.3 The Influence of Network Iteration

In this section, we evaluate the effects of different iterations of IDANet on the per-
formance of road extraction for the DeepGlobe dataset. The results are described
in Fig. 6. When the iteration number n is increased, the IoU of IDANet is also
increasing until the iteration number reaches n = 3. After that, the performance
of IDANet changes slightly to converge. The results prove that the performance
of the model is robust to parameter n = 3 for the DeepGlobe dataset and achieves
a tradeoff between accuracy and efficiency.
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Table 2. Ablation experiment

Method Accuracy Recall IoU

IDANet 0.9802 0.8066 0.6876

IDANet-D 0.9791 0.8086 0.6845

IDANet-A 0.9788 0.8053 0.6842

IDANet-DA 0.9764 0.7999 0.6792

IDANet+diceBCE 0.9758 0.8007 0.6769
1 2 3 4 5Iterations

0.683

0.685

0.687

0.689

0.691

0.693
IoU

0.6876

0.6917 0.6921 0.6923 0.6922

Fig. 6. Different iterations of IDANet

6 Conclusion

This paper aims to improve the accuracy of road extraction from high-resolution
satellite images by a novel encoder-decoder network, IDANet, which adopts
an iterative architecture to refine the road segmentation and obtain enhanced
results. For more effective feature learning, a modified D-LinkNet with attention
is proposed as the basic iteration module. We evaluate IDANet on two bench-
mark datasets. Experimental results show that our model can extract road infor-
mation from high-resolution satellite images with much better accuracy, connec-
tivity, and completeness than previous methods.

Nevertheless, there is still a big gap between the results we have obtained
and the expected. The main issues of current results are the missed identification
and wrong recognition. The overall segmentation accuracy is still unsatisfactory.
Therefore, our future work will address two aspects. On the one hand, data
is always the foundation of deep learning. We plan to adopt more advanced
data augmentation techniques and more effective data post-processing methods
to enable supervised learning. On the other hand, network is always the key to
deep learning. We plan to do more research on the design of refinement networks
to realize global and local improvement of semantic segmentation.
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