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Figure 1: Overall remeshing procedure of our method. (a) input surface with 35.0k vertices and 70.0k facets; (b) initial sample points; (c)
initial PowerRTF; (d) PowerRTF of optimized sample points; and (e) output triangular mesh with 3.0k vertices and 6.0k facets.

Abstract
Triangular meshes of superior quality are important for geometric processing in practical applications. Existing approximative
CVT-based remeshing methodology uses planar polygonal facets to fit the original surface, simplifying the computational
complexity. However, they usually do not consider surface curvature. Topological errors and outliers can also occur in the
close sheet surface remeshing, resulting in wrong meshes. With this regard, we present a novel method named PowerRTF, an
extension of the restricted tangent face (RTF) in conjunction with the power diagram, to better approximate the original surface
with curvature adaption. The idea is to introduce a weight property to each sample point and compute the power diagram on
the tangent face to produce area-controlled polygonal facets. Based on this, we impose the variable-capacity constraint and
centroid constraint to the PowerRTF, providing the trade-off between mesh quality and computational efficiency. Moreover,
we apply a normal verification-based inverse side point culling method to address the topological errors and outliers in close
sheet surface remeshing. Our method independently computes and optimizes the PowerRTF per sample point, which is efficiently
implemented in parallel on the GPU. Experimental results demonstrate the effectiveness, flexibility, and efficiency of our method.

CCS Concepts
• Computing methodologies → Computer graphics; Shared memory algorithms;

1. Introduction

Triangular meshes are most frequently utilized to represent three-
dimensional (3D) digital models owing to their versatility and sim-
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plicity. The raw meshes are typically generated using 3D model-
ing software [ER15] or reconstructed from sample points collected
by scanners [CMZZ21]. However, the majority of raw meshes are
of poor quality, e.g., small angles, short edges [LZ11, EI14], etc.,
making it impossible for them to be used directly in subsequent ap-
plications. Therefore, surface remeshing has received much atten-
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tion, and numerous techniques have been proposed to improve the
mesh quality, e.g., simplification-based [PJ19], local modification-
based [HYB∗16], and segmentation-based methods [ME16], etc.

Centroidal Voronoi tessellation (CVT) [DFG99] is a powerful
technique for surface remeshing. Specifically, given an input sur-
face and the number of sample points, the CVT energy is iter-
atively minimized to yield the optimal sample point distribution
[Bal09]. Thus, the duals of the Voronoi diagram of these optimal
sample points could be utilized to produce triangular meshes of
high quality. A significant problem in CVT-based surface remesh-
ing techniques is the computation of the Voronoi diagram on the
complex surface at each iteration. Previous work either construct
an exact Voronoi diagram on the surface, such as the geodesic
Voronoi diagram (GVD) [LFXH17] and the geodesic CVT (GCVT)
[YYY∗19], or truncate a 3D Voronoi cell of the original surface,
such as the restricted CVT (RCVT) [DGJ03] and the restricted
Voronoi diagram (RVD) [YLL∗09], etc. As they calculate precise
geodesic distances or intersections on the surface, they could be
regarded as the exact CVT-based approaches. However, calculat-
ing the geodesic distances or intersections is very time-consuming,
even taking several seconds per iteration for complex models.

Recently, the idea of approximation has been used for sur-
face remeshing [BLM17]. Several strategies [CZC∗18, XXT19,
ABE∗20] that could be considered approximative CVT-based
methodologies have been put forth. Instead of calculating precise
geodesic distances or intersections, they use a set of planar polygo-
nal facets to approximate the surface and compute CVT on these
planar facets [ZCHK13]. Thus, the computation per iteration is
significantly simplified. The primary challenge with this sort of
method is computing the approximative polygonal facets. One idea
is to construct a 3D Voronoi diagram using a series of auxiliary
points, where these facets of adjacent Voronoi cells close to the
surface boundary are considered as these desired approximative
facets, such as the restricted power face (RPF) [XXT19] and Voro-
Crust [ABE∗20], etc. They are simple and straightforward, but the
facet extraction relies on the 3D Voronoi diagram construction. An-
other option is to compute the clipped tangent planes of sample
points to roughly resemble the surface, where auxiliary points and
3D Voronoi diagram construction are no longer necessary, such as
the restricted Voronoi cell (RVC) [CZC∗18] and the restricted tan-
gent face (RTF) [YLW∗23], etc. The computation of the clipped
tangent planes for each sample point could be done independently,
allowing for high parallelization and GPU implementation. How-
ever, curvature adaption is not considered in RTF, and topological
errors and outliers may also occur in close sheet surface remeshing,
as shown in Figure 13(b).

Therefore, we concentrate on and handle the limitations in earlier
works. Motivated by the accurate capacity-constrained feature of
the power diagram, we propose an effective power diagram based
RTF (PowerRTF) to approximate the original surface, achieving
curvature-adapted and quality-controlled meshes, as shown in Fig-
ure 1. Instead of building a Voronoi diagram on each tangent plane,
we construct a power diagram by applying a weight character-
istic to each sample point for curvature-adapted surface remesh-
ing. That is, small (large) power cells with teensy (large) values
of weights are applied for curved (flat) regions, as shown in Fig-

ure 1(d). Rather than capacity constrained centroidal power dia-
gram (CCCPD) [XLC∗16], a variable-capacity constrained vari-
ant, called variable-capacity constrained centroidal power diagram
(VCCCPD) [ZYW∗21] is further introduced to combine with Pow-
erRTF, which imposes interval capacity constraint to each sample
point to achieve the trade-off between mesh quality and compu-
tational efficiency. Moreover, to tackle the topological errors and
outliers in close sheet surface remeshing, we apply an additional
normal verification-based inverse side point culling (NVISPC)
method, which avoids the impact of points from the opposing
facets. Owing to the independent construction and optimization of
PowerRTF for each sample point, we develop a GPU algorithm for
surface remeshing via PowerRTF, yielding curvature-adapted sam-
ple points and meshes. We contribute the following:

• We present an extension of RTF in conjunction with the power
diagram, namely PowerRTF, to approximate the original surface
with better curvature adaptation than state-of-the-art methods.
Instead of CCCPD [XLC∗16], a variable-capacity constrained
variant, called VCCCPD [ZYW∗21], is further introduced to
combine with PowerRTF, which imposes interval capacity con-
straint to each sample point to achieve the trade-off between
mesh quality and computational efficiency.

• We present an NVISPC method, which prevents the impact of
inverse side points to tackle the topological errors and outliers
in close sheet surface remeshing with approximative CVT-based
techniques.

• We develop a GPU-assisted construction algorithm to generate
PowerRTF from sample points rapidly. Based on this, combined
with an improved version of the weighted evaluated algorithm,
we provide a GPU algorithm to optimize the PowerRTF with
variable-capacity constraint.

The remainder of this paper is organized as follows. In Section
2, some surface remeshing techniques based on the CVT are briefly
reviewed. Section 3 provides the preliminary of the power diagram,
VCCCPD, and RTF. We presented a detailed explanation of our
method for surface remeshing in Section 4. A variety of remeshing
results of our method are shown in Section 5, and some conclusions
are given in Section 6.

2. Related work

The goal of surface remeshing is to produce meshes of high quality
by feeding the original mesh surface into a sequence of algorithms.
An exhaustive review of surface remeshing methods that may be
referred to [AUGA08, KPF∗20], is outside the scope of our work.
In this section, we briefly review CVT-based surface remeshing.

2.1. Exact CVT-based remeshing

Iteratively computing the Voronoi diagram on a large and complex
mesh surface is the main issue of the exact CVT-based remeshing.
Integrated with numerical optimization, the CVT energy is mini-
mized to generate regularly distributed sample points [LWL∗09].
Combined the relationship of meshes and their orthogonal duals,
high-quality triangular meshes could be produced based on the du-
als of the Voronoi diagram of these sample points [MMdGD11].
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Existing work on computing the exact Voronoi diagram on a sur-
face could be summarized into two categories as follows.

Geodesic distance based methods. The first category constructs a
Voronoi diagram based on the precise geodesic distance, e.g., GVD
[LFXH17], GCVT [YYY∗19], etc. GVD computation is firstly
considered in parameter space and extrapolated the Euclidean space
results to the original space. For instance, Alliez et al. [ADVDI03]
turn GCVT computation into 2D CVT computation in a unit disk
by applying a global conformal planar parameterization. Others di-
rectly compute the GVD on the original triangular meshes. The
triangular mesh is incorporated in a tensor-based anisotropy metric
in an iterative method [ZZCJ14] for mesh generation on the basis
of anisotropic geodesic calculation. Wang et al. [WYL∗15] pro-
vide two intrinsic techniques to accelerate the centroid calculation
of GVD. Herholz et al. [HHA17] define Voronoi cells on the basis
of heat diffusion and provide an approximation method to com-
pute geodesic distances on surfaces. However, calculating precise
geodesic distances on a complex surface is too complicated. Mean-
while, improving the quality of generated meshes and increasing
the efficiency of geodesic distance calculation remains a challenge.

Clipped Voronoi cell based methods. Instead of calculating pre-
cise geodesic distances, the second category calculates the Voronoi
diagram on a surface based on the intersections of a 3D Voronoi cell
and the original surface, e.g., RVD [YLL∗09], FRVD [DLY∗18],
etc. Du et al. [DGJ03] first propose a constrained CVT (CCVT),
in which each sample point coincides with the mass center of its
Voronoi cell. Yan et al. [YLL∗09] offer a polyhedral meshing algo-
rithm based on the clipped Voronoi diagram, called RVD, where an
exact calculating algorithm is proposed to truncate a 3D Voronoi
cell with the original surface. Later, they present several improve-
ments to address the deficiencies in RVD, e.g., the clipped Voronoi
diagram for closed 3D models [YWLL13], localized RVD (LRVD)
for multiple disjoint surface patches [YBZW14], CVT extension
for non-obtuse remeshing [YW15], and GPU version with effi-
cient computation [HYWZ17], etc. Numerous extension versions
of RVD have recently been developed for particular applications,
e.g., Lp CVT for surface remeshing [LL10], RVD for close sheet
models [WXT∗20], RVD on a signed distance field [HZW∗22],
and the restricted power diagram (RPD) for medial axis transform
with feature preservation [WWWG22]. However, RVD and its ex-
tensions require truncating a 3D Voronoi cell with a surface, neces-
sitating expensive computation and consuming more time.

2.2. Approximative CVT-based remeshing

Contrary to the exact CVT-based method, the approximative ones
use polygonal facets to fit the original surface [ZCHK13]. A reg-
ular distribution of sample points could be generated by com-
bining the CVT optimization and the polygonal facet computa-
tion, reconstructing meshes of high quality with several algorithms
[BL17,WWX∗22]. By avoiding the calculation of precise geodesic
distances or intersections on surfaces, the approximative CVT-
based remeshing greatly reduces computational complexity. Thus,
the computation of CVT on polygonal facets is the primary work.

Auxiliary points based methods. One class of methods for com-
puting CVT on these approximative polygonal facets is on the basis

of auxiliary points, such as RPF [XXT19], VoroCrust [ABE∗20],
etc. They construct 3D Voronoi or power diagrams using sample
points and auxiliary ones. The planes of adjacent Voronoi or power
cells close to the surface boundary are identified as these desired
polygonal facets. For instance, VoroCrust [ABE∗20] utilizes pairs
of seeds of spherical intersection to capture the surface boundary
and some interior seeds to build a 3D Voronoi diagram. Xu et
al. [XXT19] introduce weighted shadow points along the relevant
normal direction, combined with the surface sample points, to con-
struct 3D power diagram. Nevertheless, polygonal facet extraction
relies on constructing 3D Voronoi or power diagrams, and these
methods do not consider parallel computation.

Tangent plane based methods. Another option is to compute
these approximative polygonal facets without auxiliary points di-
rectly [ZCHK13]. The tangent planes of sample points are utilized
for surface approximation, e.g., RVC [CZC∗18], RTF [YLW∗23],
etc. By restricting Voronoi cells on a set of best-fitting planes,
Chen et al. [CZC∗18] extend the CVT computation on point clouds
and achieve partial surface curvature adaptation on the basis of a
density-dependent energy function, that is the density-adapted RVC
(D-RVC). More recently, Yao et al. [YLW∗23] present an RPF sim-
plification, namely RTF, where the requirement for these shadow
points is eliminated. They provide a remeshing method based on a
3D CVD framework [RSLL18] to produce meshes of high qual-
ity. Owing to GPU acceleration and a well-designed projection
strategy, this method delivers improved computation efficiency and
more accurate approximation. However, RTF fails to capture sur-
face curvature and struggles with close sheet surface remeshing,
which is also a challenge for RVC, as shown in Figure 13(b).

3. Preliminary

In this section, we provide an overview of the definition of the
power diagram, VCCCPD, and RTF.

3.1. Power diagram

The Voronoi diagram [AK00], also known as the “Voronoi tessella-
tion”, defines a set of disjoint subregions V(S) = {V (si)}n

i=1 based
on a set of points (also called “sites” or “generators”) S = {si}n

i=1
for a given domain Ω⊂ RN. Each Voronoi cell V (si), or subregion
of the relevant point si, is defined as:

V (si) = {s ∈Ω|∥s− si∥ ≤ ∥s− s j∥,∀ j ̸= i} (1)

where ∥ · ∥ denotes the Euclidean distance.

The power diagram [Aur87], as a significant extension of the
Voronoi diagram, assigns weights W = {wi}n

i=1 to points S. That
is, each point si is associated with a weight parameter wi. Each
subregion P(si), called power cell, is redefined as:

P(si) = {s ∈Ω|∥s− si∥2−wi ≤ ∥s− s j∥2−w j,∀ j ̸= i} (2)

The bisector of two adjacent power cells is the equal power distance
line in two dimensional (2D) or the equal power distance plane in
3D. Notably, the power diagram degenerates to the Voronoi dia-
gram when the weights of all points are equal [AHA98].
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(a) (b) (c) (d)

Figure 2: Exemplification of RTF and PowerRTF on the Eight model with same sample points, where purple dots represent the sample points
on the surface. (a) RTFs of sample points in [YLW∗23]; (b) triangular meshes generated by RTF [YLW∗23]; (c) PowerRTFs of sample points
to capture the surface curvature; and (d) triangular meshes obtained by PowerRTF.

3.2. VCCCPD

By applying the centroid constraint to the conventional power dia-
gram, the centroidal power diagram (CPD) could be produced [DG-
BOD12], where each point si is positioned at the center-of-mass s∗i
of the corresponding power cell P(si), that is,

si = s∗i =

∫
P(si)

sρ(s)ds∫
P(si)

ρ(s)ds
(3)

where ρ(s) is a C1-smooth density function on Ω.

Owing to the introduction of weight to each point, the power
diagram has the property of accurate capacity constraint, and a CC-
CPD is generated by adding an additional capacity constraint to the
CPD. The capacity mi =

∫
P(si)

ρ(s)ds (i.e., area or mass, etc.) of the
power cell P(si) is equal to the preset fixed value ci, that is, mi = ci.

Recently, Zheng et al. [ZYW∗21] provide an extension of CC-
CPD, namely VCCCPD, where the capacity constraint of each
point is confined to a variable-capacity constraint, that is, a
capacity-constrained interval [cmin

i ,cmax
i ]. They present a weight

evaluated algorithm to optimize weights of points to satisfy the
capacity-constrained interval, that is,

cmin
i ≤ mi =

∫
P(si)

ρ(s)ds≤ cmax
i (4)

Similarly, a VCCCPD degenerates into a CCCPD when the
capacity-constrained interval of each point si is a constant value,
i.e., cmin

i = cmax
i = ci.

3.3. RTF

Let M = {VM ,FM} be a mesh surface that consists of a set of ver-
tices VM = {vi}nv

i=1 and a set of triangular facets FM = {ti}
n f
i=1,

where nv and n f are the number of vertices and triangular facets.
Each triangular facet ti is represented by three ordered vertices,
with indices 0, 1, and 2. Let S = {si}n

i=1 denote n different sam-
ple points on the original surface M. The RTF [YLW∗23] defines a
set of approximative polygonal facets F = {Fi}n

i=1 to fit the origi-
nal surface M. Each polygonal facet Fi is determined on the basis of
the tangent plane of si. To be specific, the RTF Fi of si is composed
by the intersections of the tangent plane τi and the vertical bisector
planes of its neighbor points, that is, Fi ⊂ τi, as shown in Figure 2.

Taking advantage of the independent computation, Yao et al.
[YLW∗23] present a GPU-based approach to compute the RTF of
each sample point, and more regularly distributed sample points
could be produced with a projection strategy, yielding high-quality
meshes. In this paper, we combine the power diagram with RTF
and provide a PowerRTF to capture the surface curvature.

4. PowerRTF based surface remeshing

In this section, we first introduce the concept of PowerRTF and the
GPU-assisted PowerRTF construction method. Based on this, com-
bining with the variable-capacity constraint and centroid constraint,
a GPU optimization method is presented for surface remeshing,
producing quality-controlled meshes.

4.1. PowerRTF and its construction

To compute the RTF Fi of sample point si, Yao et al. [YLW∗23]
truncate a 3D Voronoi cell V (si) with the tangent plane τi, resulting
in a polygonal facet. The Voronoi cell V (si) is clipped based on the
k-nearest-neighbor points, as shown in the top row in Figure 3. In
this paper, we offer the generalized RTF, namely PowerRTF, to ap-
proximate the given surface based on power diagrams, as illustrated
the bottom row in Figure 3. Without loss of generality, the Power-
RTF of sample point si is also recorded as Fi. Instead of the Voronoi
cell in RTF, we apply a 3D power cell P(si), which is pre-clipped
according to the k-nearest-neighbor points and their weights. Thus,
the PowerRTF Fi of sample point si could be obtained by intersect-
ing the clipped power cell with the tangent plane τi.

We first recall some notions of PowerRTF as follows. Let S =
{si}n

i=1 represent a set of sample points on the original surface M,
associated with a set of weights W = {wi}n

i=1. ei j denotes the reg-
ular edge between two adjacent sample points si and s j, and si j is
the intersecting point of ei j and the equal power distance plane.
According to the definition of the power diagram, the value of
si j = (xs

i j,y
s
i j,z

s
i j) could be calculated as [DGBOD12, ZGC∗19]:

si j = si +
∥s j− si∥2 +(wi−w j)

2∥s j− si∥2 · (s j− si) (5)

As a result, the equation of the equal power distance plane could be
calculated using the positions and weights of the sample points si
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Figure 3: Exemplification of the pre-clipping process of RTF and PowerRTF in 2D space. Top: the pre-clipping process of RTF based on the
Voronoi diagram in [YLW∗23]. (a) the bisector (red line) of two points si and s j; (b) sample points; (c) k-nearest-neighbor points (blue dots)
of si; and (d) clipped Voronoi cell V (si) with its k-nearest-neighbor points. Bottom: the pre-clipping process of PowerRTF on the basis of the
power diagram in our work, where wi is the weight of sample point si. (e) the equal power distance line (red line) of two points si and s j; (f)
sample points; (g) k-nearest-neighbor points (blue dots) of si; and (h) clipped power cell P(si) with its k-nearest-neighbor points.

and s j as follows:{
xs

i j · x+ ys
i j · y+ zs

i j · z−ni j · si j = 0

ni j = si− s j
(6)

where ni j is the normal of the equal power distance plane.

Similar to RTF computation in [YLW∗23], we start with initial-
izing a 3D power cell P(si) of the sample point si by the bounding
box of the input surface M. Based on Equation 6, the initialized
power cell P(si) is then clipped by the equal power distance facets
of its k-nearest-neighbor sample points Sk

i , where k is the number
of neighbor sample points, and the default value of k is set to 32 in
our work. Thus, we could obtain a 3D clipped power cell P(si) with
suitable size. According to the position si and normal ni of the sam-
ple point, we could directly calculate the tangent plane τi equation,
which is also known as RTF or PowerRTF plane equation. Conse-
quently, the 3D clipped power cell P(si) is further truncated with
the tangent plane τi, yielding the PowerRTF Fi of si. Owing to the
well-designed clipped power cell computation and PowerRTF clip-
ping, the PowerRTF per sample point is constructed independently,
which is friendly for GPU implementation. The GPU-assisted con-
struction algorithm of PowerRTF is provided in algorithm 1. Theo-
retically, the running time complexity of algorithm 1 is O(n) owing
to the independence and parallelism of the PowerRTF construction
for each sample point.

4.2. PowerRTF optimization

The fundamental principle of PowerRTF is to approximate the
given surface by computing a set of polygonal facets in conjunc-
tion with the power diagram. In the curved (flat) regions, small
(big) power cells are used to capture the surface curvature. How-
ever, due to the randomly distributed sample points in the ordinary
PowerRTF, meshes of poor quality frequently appear. Besides, as
shown in Figure 1(c), there are gaps between the original surface

Algorithm 1: GPU-assisted PowerRTF construction
Input: surface M, sample points S = {si}n

i=1, weights
W = {wi}n

i=1, point normal N = {ni}n
i=1

Output: PowerRTF F = {Fi}n
i=1

1 for si ∈ S in parallel do
2 Initialize P(si) with BoundingBox(M)
3 Search k-nearest-neighbor points set Sk

i from S
4 for s j ∈ Sk

i do
5 Clip P(si) based on Equation 6
6 end
7 Compute the tangent plane τi based on si and ni
8 Calculate Fi by truncating P(si) with τi

9 end

and the PowerRTFs. The total mass of PowerRTFs for all sample
points is not constant but varies with their positions and weights.

Therefore, we impose the centroid constraint and interval capac-
ity constraint to each sample point to produce adaptively distributed
sample points, from which curvature-adapted meshes could be ex-
tracted. With the introduction of interval capacity constraint, we
can vary the capacity-constrained interval of each sample point to
achieve the trade-off between the mesh quality and computational
efficiency, as shown in Figure 11. Moreover, the capacity constraint
per sample point is relaxed from a value to an interval could accel-
erate the convergence of PowerRTF computation as the optimiza-
tion process stabilizes and the total mass of PowerRTFs fluctuates
within a certain range.

Without loss of generality, the proportion of the capacity-
constrained interval is denoted as γ, and mi is the average Pow-
erRTF capacity of all sample point S. Thus, we introduce the
capacity-constrained interval [cmin

i ,cmax
i ] to each sample point si,
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which is defined as: [(1− γ) ·mi,(1 + γ) ·mi]. Moreover, based
on the density function ρ(si) of a given point si on the original
surface M, the mass of the PowerRTF Fi could be calculated as:
mi = A(Fi) ·ρ(si), where A(Fi) is the area of Fi. To generate Pow-
erRTF with interval-capacity constraint, we provide a GPU method
by alternatively optimizing the weights and positions per iteration.

4.2.1. Weight optimization

According to the definition of power diagrams [DGBOD12], the
borderlines of a power cell P(si) (or Fi) is affected by the weight
wi of associated sample point si, which is strongly related to the
mass mi of P(si) (or Fi). Therefore, to produce PowerRTF with
interval-capacity constraint, that is, cmin

i ≤mi ≤ cmax
i , we adopt the

weight evaluated algorithm in [ZYW∗21] and provide an improved
version in this work. As shown in the Figure 4, let li j (or l′i j after
weight changed) signify the distance between the equal power dis-
tance and the point si, i.e., li j = ∥si j − si∥. Taking the increasing
of the weight wi as an example, let ∆wi = w′

i −wi > 0 represent
the weight variation of point si, and ∆si j indicate the distance vari-
ation of the equal power distance lines (blue to purple lines), i.e.,
∆si j = l′i j− li j. Based on the definition of power diagrams, Zheng
et al. [ZGC∗19] provide the formulation of ∆si j as follow:

∆si j =

∥∥∥∥ w′
i−wi

2∥si− s j∥2 · (s j− si)

∥∥∥∥=
∆wi

2di j
(7)

where di j = ∥si− s j∥ is the distance of points si and s j.

𝑃 𝐬
𝑃 𝐬

𝑃 𝐬
𝑃 𝐬

(a) (b)

Figure 4: The equal power distance variation ∆si j in 2D space.

Based on the Equation 7, the weight variation ∆wi is determined
as: ∆wi = 2di j ·∆si j . However, the distance di j between the sample
point si and its neighboring sample points are not the same, mak-
ing it difficult to determine the weight variation in the optimization
process. Similar to [ZYW∗21], based on the distance Di between
the sample point si and its nearest neighboring sample point and a
fixed value of ∆si j , the weight variation ∆wi could be re-calculated
as: ∆wi = 2Di ·∆si j , where ∆si j is set to 0.20 during the optimiza-
tion phase to control the area variation of PowerRTFs.

In our work, we apply a multiplicative operator αi = ⌊∆mi
∆ci
− 1⌋

of each sample point si to speedup the convergence of the weight
evaluated algorithm, where ∆mi = |mi − 0.5(cmin

i + cmax
i )| is the

capacity difference and ∆ci = 0.5(cmax
i − cmin

i ) is the half size of
the capacity-constrained interval. Consequently, the weight wi is
increased as wi = wi +αi ·∆wi for the sample point si whose mass
mi less than the left value of the respective capacity-constrained in-
terval. Conversely, we decrease the weight wi as wi = wi−αi ·∆wi
when the mass mi is greater than the right value of the capacity-
constrained interval. This process is repeated until all masses of

Algorithm 2: Improved version of the weight evaluate
method

Input: sample points S = {si}n
i=1, associated with weights

W = {wi}n
i=1, capacity constraints

C = {[cmin
i ,cmax

i ]}n
i=1, maximum weight iteration

number Nw
m

Output: PowerRTF F = {Fi}n
i=1 with (S′,W′)

1 Set the counter nw
it to 0

2 while ∃s j,m j /∈ [cmin
j ,cmax

j ] and nw
it < Nw

m do
3 for si ∈ S in parallel do
4 Compute the multiplicative operator αi and weight

variation ∆wi
5 if mi < cmin

i then
6 Update weight wi = wi +αi ·∆wi
7 else if mi > cmax

i then
8 Update weight wi = wi−αi ·∆wi
9 end

10 end
11 Call algorithm 1 to construct the PowerRTFs of S
12 Compute mi of each sample point si in parallel
13 nw

it ← nw
it +1

14 end

the PowerRTFs are inside the relevant capacity-constrained inter-
val, and the procedure is presented in algorithm 2. From a theo-
retical perspective, the running time complexity of algorithm 2 is
O(n), which is similar to algorithm 1.

4.2.2. Position optimization

One prevalent method for position optimization is Lloyd’s method.
In our work, we follow a similar method that each sample point si
is relocated to the center-of-mass bi of the respective PowerRTF Fi
in each iteration. However, the center-of-mass bi may be deviated
from the surface, resulting in a large distance error (evaluated by
the Hausdorff distance) between the output meshes and the origi-
nal surface. With this regard, we utilize the KNN-based projection
strategy in [YLW∗23] to restrict the movement of sample points on
the original surface, as shown in Figure 5.

𝒃

𝒃
𝑡

(a)

𝒃

𝒃
𝒃

𝑡

(b)

Figure 5: Exemplification of the KNN-based projection strategy,
where pink dots represent the center-of-mass bi of the PowerRTF
Fi, and red dots indicate the projected points bp

i of bi on the plane
of a triangle facet t j. (a) bi is projected inside the triangular facet

t j, and (b) bi is projected outside the triangular facet t j (that is bp′
i ),

which is further projected onto the borderlines of t j.

To be specific, for each sample point si, we calculate the
center-of-mass bi of the associated PowerRTF Fi and select the
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Algorithm 3: PowerRTF for surface remeshing
Input: original surface M, number of sampling points n, the

proportion γ, maximum number of iterations Nm
Output: triangular meshes M′

1 Calculate the normal nv
i and density ρ(vi) of each vertex

vi ∈ VM

2 Sample points S = {si}n
i=1 from the input surface M

3 Set the initial weights W = {wi}n
i=1 to 1 of S

4 Set the counter nit to 0
5 while ∃s j ∈ S,m j /∈ [cmin

j ,cmax
j ] and nit < Nm do

6 for si ∈ S in parallel do
7 Estimate the normal ni and calculate the density

ρ(si) of sample point si
8 Call algorithm 1 to construct the PowerRTF Fi
9 Calculate the mass mi

10 end
11 Set the capacity-constrained interval [cmin

i ,cmax
i ]

12 for si ∈ S in parallel do // weight
13 Call algorithm 2 to optimize the weight wi
14 end
15 for si ∈ S in parallel do // position
16 Calculate the barycenter bi of Fi
17 Project the barycenter bi to bp

i on M
18 si ← bp

i
19 end
20 nit ← nit +1
21 end
22 Extract the triangular meshes M′ from optimized S

k-nearest-neighbor vertices Nk
i from the original surface. Based on

these neighboring vertices Nk
i , the center-of-mass bi is projected

onto the triangular facets with at least one vertex in Nk
i , as shown

in Figure 5. Consequently, the sample point si is restricted to the
projected point with the smallest projection distance, achieving the
optimization of sample points on the original surface.

4.3. Surface remeshing

The key idea of our work is to approximate the raw mesh surface
using a set of PowerRTFs with multiple constraints, thereby gener-
ating adaptively distributed sample points. By varying the capacity-
constrained interval of each sample point, a quality-controlled
mesh could be extracted from these optimized sample points. Start-
ing with the input raw meshes, our method proceeds as depicted in
Figure 1, and the pseudo-code for surface remeshing is provided
in algorithm 3. Note that the capacity-constrained interval of each
sample point si is set to [(1−γ) ·mi,(1+γ) ·mi], where mi is the av-
erage PowerRTF mass of all sample points in each iteration. Theo-
retically, the running time of algorithm 3 is O(n2). We present some
implementation details of our method as follows.

Initial Sampling. A simple way to initialize the points S is ran-
domly sampling from the original surface M. Nevertheless, the re-
sulting points are incongruent with the original surface curvature,
which may have a negative impact on the stability and convergence

of the PowerRTF optimization. Therefore, we offer an initialization
strategy to sample n points from the original surface with curvature
adaptation as follow: (1) For an input surface M, we first estimate
the normal nv

i of each vertex vi, and then calculate and normalize
the curvature κ

v
i of vi as: κ

v
i ∈ (0,1]; (2) The normalized curvature

per vertex is converted to a density function f with positive correla-
tion: ρ(vi) = f (κv

i ), e.g., proportional or user-specified functions;
(3) From the original surface M, we randomly upsample m-times
more points, that is m× n points S↑ and calculate their relevant
density values; (4) From the point set S↑, n pre-sampled points
are chosen with density-dependent probability as the initial sam-
ple points S of our method. In our work, m is set to 2. Notably, the
intialization strategy could be replaced by other curvature-adapted
sampling methods in Geogram [LF15] or PCL [RC11].

The initial sample points (purple dots) are shown in Figure 1(b)
on a StandingCat mesh surface. Obviously, more points are posi-
tioned at curved regions, e.g., ears, feet, and tail, etc., and fewer
points are located at flat regions, e.g., body, etc. To further im-
prove the stability of PowerRTF construction, we apply ten itera-
tions without weight optimization to these initialized sample points
S, producing more regularly distributed sample points, as shown in
Figure 1(c).

Normal estimation and density calculation. The PowerRTF of
each sample point is defined as the intersection of a 3D power
cell with the tangent plane. Therefore, the normal estimation of
each sample point is crucial to the PowerRTF construction in al-
gorithm 1. Unlike previous work [CZC∗18, YLW∗23], we cal-
culate the normal ni of sample point si based on the kn-nearest
vertices from the original surface M: ni =

1
kn

∑
kn
i=1 nv

i . Similarly,
we could calculate the density value ρ(si) of sample point si as:
ρ(si) =

1
kd

∑
kd
i=1 ρ(vi),vi ∈ VM , where kn and kd are the number of

nearest-neighbor vertices of si from the original surface M.

√

√

√

×

×

×

×

√

√

×

×

×

(b)(a)

Figure 6: Exemplification of normal verification and remeshing re-
sults on a Close Hemisphere model. (a) normal verification of close
sheet (left) or separation (right) surface remeshing, where purple
dots are the current sample points, dots in blue circular are the
k-nearest neighbors, blues dots are taken into account for compu-
tation while red dots are not considered; (b) generated PowerRTF.

NVISPC method. In view of approximating the original surface
using polygonal facets, the topology of close sheet surface remesh-
ing remains a challenge in earlier work [CZC∗18,YLW∗23]. These
methods mostly use the k-nearest-neighbor sample points to esti-
mate the normal of each point, resulting in biased or inaccurate
normal of points placed at close sheet regions. In our work, an addi-
tional NVISPC method is carried out to address this problem while
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#𝑛 𝑄 ↑ 𝑄 ↑ Θ ↑ Θ ↑ Θ ° ↓ Θ ° ↓ 𝑑 10 ↓
3.0k 0.555 0.880 26.905 49.748 0.001 0.011 0.114

#𝑛 𝑄 ↑ 𝑄 ↑ Θ ↑ Θ ↑ Θ ° ↓ Θ ° ↓ 𝑑 10 ↓
6.0k 0.454 0.879 25.877 49.809 0.001 0.015 0.120

Figure 7: Remeshing results with uniform density on three differ-
ent models with holes (top), multiple slender regions (middle), and
complex topologies (bottom).
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Figure 8: Remeshing results with non-uniform density on three dif-
ferent models with multiple holes (top), narrow regions (middle),
and complex topologies (bottom).

computing the normal, pre-clipped power cell, and position opti-
mization of each sample point.

Taking the close sheet as an example, as shown in Figure 6(a),
the normal of each sample point is determined based on its
k-nearest-neighbor vertices (dots in blue circular) in the original
surface M. For a point (purple dot) on the close-plate region, some
vertices on the opposite side (red dots) are mistakenly treated as
its k-nearest neighbors, leading to incorrect normal estimation. To
solve it, we first calculate the angle between the basic normal (pur-
ple arrow, average normal of its three-nearest-neighboring vertices
in normal estimation, otherwise its own normal) and the normal
of its neighboring vertices. Then, these neighboring vertices (blue
dots) are taken into consideration only if the angles lie within a
given threshold Θ

#. Notably, the value of Θ
# is set to 60◦ in our

work. Similarly, this normal verification is taken for the 3D power
cell pre-clipping in PowerRTF construction and the projection strat-
egy in position optimization of each sample point. Consequently,
our method can mostly address the topological errors or outliers in
close sheet surface remeshing, producing high-quality meshes, as
shown in Figure 6(b).

Mesh extraction. An adaptively distributed sample points could
be generated after the PowerRTF optimization, from which the
high-quality meshes could be produced. However, as shown in Fig-
ure 1(d), the misaligned facets in the PowerRTF optimization make
it almost impossible to directly generate the desired triangular mesh

since the connectivity is ambiguous. To achieve it, we utilize a ro-
bust technique, called the RVD-based mesh extraction method pro-
vided in [BL17], which reconnects the input points with triangles
based on the calculation of their restricted Voronoi cells. For degen-
erate cases that could arise where there are four co-circular sample
points on the same plane and the possibility of isolated holes, a
manifold extraction method and a set of post-processing heuristics
to recover a clean mesh, which could be refered to [BL17]. The
source code of the RVD-based mesh extraction method [BL17] is
provided by the authors in the Geogram library [LF15]. Notably,
the optimized sample points are utilized as inputs of the RVD-based
mesh extraction method in our work, generating triangular meshes
without optimization operations.

5. Experiments

In this section, we demonstrate the capability of the proposed Pow-
erRTF method for surface remeshing and investigate the impact
of some parameters. In order to evaluate the remeshing results,
we also compare our method with the state-of-the-art approximate
CVT-based methods, i.e., the RVC [CZC∗18], RTF [YLW∗23], and
density RVC (D-RVC) [CZC∗18], etc. All experiments are per-
formed on a Windows 10 computer with 3.6 GHz Intel (R) Core
(TM) i7-9700K CPU with 16 GB memory, and a NVIDIA GeForce
RTX 2080 Ti with 11 GB memory, using CUDA version 10.0.
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(b)(a) (c)

𝑄 ↑ Θ ↑ Θ ↑ Θ ° ↓ 𝑑 10 ↓
0.615 28.786 49.512 0.007 0.0497

𝑄 ↑ Θ ↑ Θ ↑ Θ ° ↓ 𝑑 10 ↓
0.573 25.987 50.141 0.006 0.0521

𝑄 ↑ Θ ↑ Θ ↑ Θ ° ↓ 𝑑 10 ↓
0.551 25.952 49.857 0.009 0.0609

(b)(a) (c)

𝑄 ↑ Θ ↑ Θ ↑ Θ ° ↓ 𝑑 10 ↓
0.615 28.786 49.512 0.007 0.0497

𝑄 ↑ Θ ↑ Θ ↑ Θ ° ↓ 𝑑 10 ↓
0.573 25.987 50.141 0.006 0.0521

𝑄 ↑ Θ ↑ Θ ↑ Θ ° ↓ 𝑑 10 ↓
0.551 25.952 49.857 0.009 0.0609

Figure 9: Results of our method with various densities on the Retinal model, including the PowerRTF (blue) and the corresponding triangular
meshes (yellow). (a) results with ρ = f ; (b) results with ρ = f 2; and (c) results with ρ = f 3.

GPU implementation and parameter setting. The ability of our
method to compute and optimize each PowerRTF independently is
friendly for a GPU implementation. Here we provide some imple-
mentation details of our method. Similar to the 3D clipped Voronoi
diagram [RSLL18,LMGY22], the sets for vertices and plane equa-
tions are stored in shared memory arrays of constant size max 96
and 64, respectively. The number of thread by blocks is set to 16.
The parameter k for the PowerRTF construction is set to 32, and 16
for the projection strategy to restrict the sampling points moving on
the surface, that is similar to the RTF in [YLW∗23]. Moreover, the
parameters kn and kd are set to 12; the default value of the propor-
tion of the capacity-constrained interval γ is set to 4%; the default
values of Nw

m and Nm are set to 30 and 100; and the number of
sampling points n is set to 3.0k.

Mesh Quality metric. We use the criteria in [KPF∗20] to assess
the quality of meshes in our experiments. For a triangular t, the
quality is determined as Qt =

6√
3
· At

St Et
, where At , St , and Et are

the area, half-perimeter, and the length of the longest edge, respec-
tively. Therefore, the quality of a surface mesh is firstly measured
by the minimum triangle quality Qmin and the average quality Qavg.
Additionally, the quality of a surface mesh is measured by the an-
gles of triangles, including the minimal angles of all triangles Θmin,
the average of the minimal angles Θmin, and the percentage of tri-
angles with angles less than 30◦, recorded as Θ<30◦ , or greater than
90◦, denoted by Θ>90◦ . We also report the approximation error in
view of the Hausdorff distance dH , that is normalized by the di-
agonal of the bounding box, and the computational time T (s) of
surface remeshing. Notably, the symbols ↑ or ↓ indicate that the
larger or smaller the value corresponds to a better quality result.

5.1. Uniform and adaptive remeshing

Owing to the capacity constraint characteristic of the power dia-
gram, our method offers the capability of surface remeshing with
uniform and adaptive densities (user-defined or surface curvature
adaptation). Therefore, we start by evaluating our method on a vari-
ety of models exhibiting different challenges ranging from smooth
surfaces, e.g., Genus, Three Holes, etc., to complex surfaces, e.g.,
Bunny, Dragon, and Armadillo, etc. The relevant results of our
method with uniform density are shown in Figure 7, and these re-
sults with adaptive density are provided in Figure 8. The remeshing
results prove the effectiveness of our method. In view of the quality
of generated meshes, when the density of the model surface varies

widely, there are a few sample points with large power cells in the
flat regions while more sample points with small power cells in the
curved regions, such as the ears in the Bunny, etc. In this case, there
may be a few triangular facets with small angles, leading to some
slightly inferior values of the mesh quality metric, e.g., the minimal
triangle quality Qmin and the minimal angle Θmin in Figure 8.

5.2. Parameters analysis

The quality of generated results are controlled by the values of
some parameters, i.e., the density ρ, the propotion of the capacity-
constrained interval γ, and the number of sample points n. We now
investigate the effects of these parameters on the generated results
of the proposed PowerRTF.

Analysis of density. Firstly, we test the impact of the density ρ on
the PowerRTF optimization and the generated triangular meshes. In
this experiment, we select a relatively smooth surface, namely Reti-
nal model, as the basis input of our method. In the initial sampling
phase, three different positive correlation functions are utilized to
calculate the normal curvature κ

v
i of each vertex vi on the original

surface M, from the primary, quadratic to cubic functions resepc-
tively. Thus, the density value ρ(si) per sample point si is varying
with the given functions based on the density calculation strategy
in our method. Figure 9 demonstrate the impact of the density ρ on
the Retinal model.

From the results in Figure 9, it can be observed that our method
is effective in constructing and optimizing PowerRTFs of sam-
ple points at different densities. Simultaneously, these results also
demonstrate the ability of PowerRTF to characterize the surface
curvature, which is consistent with the motivation of our work. To
be specific, more sample points with small power cells are used to
approximate the curved regions, while less with large power cells
are applied to capture the flat regions in the original surface. More-
over, the curvatures change more dramatically, i.e., the greater the
density value, the greater the difference of the relevant PowerRTFs,
which is a reflection of the impact of the density ρ on the gener-
ated triangular meshes, as shown in Figure 9. This behavior of our
method in terms of ρ is consistent for different models.

Analysis of interval and number of sample points. Next, we
study the impact of varying both the proportion γ of the capacity-
constrained interval and the number n of sample points. The rela-
tively smooth Fertility model is taken as input of PowerRTF. In this
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Figure 10: The impact of the proportion γ of the capacity-constrained interval and the number n of sampling points, demonstrated on the
Fertility surface, where blue results represent the optimized PowerRTFs and yellow results indicates the generated triangular meshes.
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Figure 11: Impact of the proportion of the capacity-constrained
interval γ and the number of sampling points n. Top: the minimum
triangle quality Qmin, the minimum angle Θmin. Bottom: number of
iterations of our method, and running time of our method.

experiment, the proportion γ of the capacity-constrained interval is
selected from a set {2%,4%,6%,8%,10%}, and the number n of
sample points is set to {3.0k,6.0k,9.0k}, respectively. Figure 10 il-

lustrates the visual comparisons of these results for a combination
of 3× 5 parameter settings, and the quality and running time of
each combination in Figure 10 are reported in Figure 11. It should
be mentioned that the value of Nm is set to 200 when the value
of γ is 2%, because our method requires more iterations and time
consumption under small capacity-constrained intervals.

From a qualitative perspective, as shown in Figure 10, the gener-
ated PowerRTFs and triangular meshes are influenced by the distri-
bution of sample points, which varies with the capacity-constrained
interval. Meanwhile, these triangular meshes are affected by the
ability of surface curvature characterization, that is related to the
number of sample points. Specifically, small value of the parameter
γ brings about a more adaptively distributed sample points, from
which we could obtain meshes of higher quality, as shown in these
results with γ = 2% in Figure 10. Besides, large number of sample
points has the better capability to capture the surface curvature, i.e.,
more sample points are located at the curved regions in the original
surface, as shown in these results with n = 9.0k in Figure 10.

From a quantitative perspective, as shown in Figure 11, the qual-
ity and the running time of generated meshes are affected by the
parameters γ and n. More generally, a small value of γ, i.e., a small
capacity-constrained interval, produces more regularly distributed
sample points, thus yielding meshes of higher quality, as shown in
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Figure 12: The visual comparison of various models on three models. The quality and relevant time of these results are reported in Table 1.

the top row in Figure 11. However, this typically requires more it-
erations and time consumption, as shown in the bottom row in Fig-
ure 11. Moreover, more iterations and time consumption are also
necessary for surface remeshing with more sample points. When
more sample points are used for surface remeshing, PowerRTF
could characterize curved regions in a better manner. Nevertheless,
the density is discreted during the density calculation per sample
point in our method, leading to a large density variability in flat-to-
curved regions. Therefore, there may be a few slender and small-
angle triangular facets in these results using more sample points.

5.3. Comparison

We compare against the RVC [CZC∗18] and the RTF [YLW∗23]
as representatives of state-of-the-art surface approximation al-
gorithms based on CVT without auxiliary points and the MPS
[GYJZ15] as representative of the surface remeshing algorithm
based on CVT computation in parameter space. Notably, the MPS
is a CPU-based method, RVC is a multi-threading method on
the CPU, and RTF is a GPU-assisted method. Besides, the RVD
[YLL∗09], as a representation of the exact CVT-based method, is
also taken for comparison in close sheet surface remeshing.

Comparison on normal models. Firstly, we select several meth-
ods for the comparison of uniform and adaptive remeshing, includ-
ing the MPS [GYJZ15], RVC [CZC∗18], RTF [YLW∗23], and D-
RVC [CZC∗18], respectively. Notably, the MPS, RVC and RTF ap-
ply CVT for optimizing the polygonal facets without taking into
account the surface curvature to approximate the original surface.
Conversely, the D-RVC is an improved version of the RVC pro-
posed by Chen et al. [CZC∗18], which applies a density term in
the energy function to capture the surface curvature. Therefore, the
MPS, RVC and RTF are used for comparison with uniform remesh-

ing, whereas the D-RVC is employed for comparison with adaptive
remeshing. Three normal models, including the Armchair, Stand-
ingCat, and Kitten, are taken as inputs for various methods, where
the number of sample points n are set to 3.0k to maintain consis-
tency. Besides, all parameters in our method are set to their default
values. Figure 12 illustrates the remeshing results of different meth-
ods, and the quality and running time are reported in Table 1.

According to these results in Figure 12 and Table 1, it is clear
that our method is successful in remeshing different simple models
at both uniform and adaptive densities, producing relatively high-
quality meshes. In view of uniform surface remeshing, our method
produces almost the best results for three different inputs. Com-
pared to MPS, our method generates meshes of higher quality, but
the reported time of MPS is better than ours, as the MPS calculates
the 2D CVT in the parameter space. Compared to the RVC and
RTF, our method combines power diagrams and RTF to generate
a more regularly distributed sample points based on the property
of the precise capacity constraint in the power diagram. In contrast,
the Voronoi diagram is used in RVC and RTF without the capability
of capacity constraint. Moreover, similar to RTF, the sample points
are projected onto the original surface rather than a best-fitted plane
in RVC, achieving small Hausdroff distance errors, as shown in
Table 1. In terms of computational efficiency for uniform remesh-
ing, the superiority of our method is attributed to two aspects. On
one hand, the initial sampling strategy in this paper yields rela-
tively regularly distributed sample points, which are fed as inputs
for subsuquent optimization phase. On the other hand, to achieve
quality-controlled remeshing, the capacity constraint is relaxed to
an interval in our method rather than a fixed value, which also im-
proves the optimization efficiency, as shown in Figure 11.

Considering adaptive surface remeshing, our method achieves
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Table 1: The quality and running time of various methods on different models, where the red values indicate the best results in different types.

Model Type Method Qmin ↑ Qavg ↑ Θmin ↑ Θmin ↑ Θ<30◦ ↓ Θ>90◦ ↓ dH(×10−2) ↓ T (s)↓

Armchair

- Input 0.024 0.633 1.257 33.468 0.398 0.505 - -

Uniform
MPS 0.443 0.798 26.974 44.421 0.006 0.166 0.083 0.472
RVC 0.616 0.903 33.151 52.152 0.000 0.010 0.105 4.450
RTF 0.484 0.883 26.149 50.185 0.001 0.015 0.087 6.882
Ours 0.707 0.929 33.724 53.805 0.000 0.000 0.073 1.565

Adaptive D-RVC 0.529 0.880 21.242 50.951 0.001 0.022 0.135 5.731
Ours 0.476 0.886 25.730 49.789 0.001 0.014 0.066 13.121

StandingCat

- Input 0.118 0.704 6.467 37.537 0.245 0.353 - -

Uniform
MPS 0.477 0.800 27.350 44.665 0.004 0.159 0.107 0.561
RVC 0.599 0.900 34.935 51.965 0.000 0.012 0.094 4.762
RTF 0.530 0.889 27.618 50.651 0.001 0.009 0.066 7.140
Ours 0.671 0.917 32.389 52.726 0.000 0.000 0.066 2.754

Adaptive D-RVC 0.559 0.907 31.819 52.513 0.000 0.007 0.099 6.541
Ours 0.600 0.899 31.007 51.245 0.000 0.004 0.068 11.652

Kitten

- Input 0.060 0.701 3.842 37.369 0.256 0.361 - -

Uniform
MPS 0.470 0.799 26.608 44.379 0.005 0.166 0.086 0.387
RVC 0.646 0.901 35.509 51.936 0.000 0.009 0.067 4.615
RTF 0.547 0.887 29.677 50.490 0.000 0.009 0.057 7.591
Ours 0.687 0.925 36.532 53.468 0.000 0.000 0.054 1.658

Adaptive D-RVC 0.597 0.891 30.217 51.325 0.000 0.015 0.124 5.429
Ours 0.581 0.891 29.494 50.686 0.000 0.006 0.052 8.856

comparable results with comparison to the D-RVC. From a qual-
itative perspective, our method is more consistent with the origi-
nal surface in characterizing the surface curvature, e.g., the base of
Armchair, the ear of StandingCat and Kitten, etc. In D-RVC, the
density per sample point is calculated based on the two principle
curvatures of the input points, and this yields density values similar
in the curved regions. Besides, there is no guarantee in the Voronoi
diagram that polygonal facets are of certain masses or capacities,
so they are typical quite different. Unlike D-RVC, our method cal-
culates the density per sample point based on the normal curvatures
of vertices in original surface, and the masses of PowerRTFs in our
work similar owing to the property of precise capacity constraint
in power diagrams. Therefore, our method could better character-
ize the surface curvature, as shown in the red and blue circles in
Figure 12. From a quantative perspective, the quality of meshes
generated by our method is comparble to D-RVC in some metric,
but inferior in others, e.g., Qmin and Θmin. The main reason is the
presence of some slender and small-angle triangular facets in the
regions where curvatures change dramatically on the original sur-
face. In terms of computational efficiency for adaptive remeshing,
a weight optimization process is necessary in our method, which
requires more time consumption. Overall, though there are some
weakness, our work surpasses the counterparts in curvature adap-
tive ability.

Comparison on close sheet models. Close sheet topology mod-
els are particularly important for physical simulations. It has been
a challenge for remeshing work, especially for algorithms that ap-
proximating the surfaces with polygonal facets. Next, we compare
with two existing algorithms in remeshing a close sheet surface, in-
cluding the RVD [YLL∗09] as a representation of exact CVT-based
method and the D-RVC [CZC∗18] as a representation of approxi-
mative CVT-based technique. Figure 13 presents the results gener-

ated different methods on the Elk model, where the number n of
sample points is set to 6.0k for three methods.

𝑄 ↑ 0.548
𝜃 ∘ ↓ 0.000
𝑑 ↓ 0.068
𝑇 𝑠 ↓ 124.765

𝑄 ↑ 0.070
𝜃 ∘ ↓ 0.033
𝑑 ↓ 0.214
𝑇 𝑠 ↓ 6.213

𝑄 ↑ 0.477
𝜃 ∘ ↓ 0.001
𝑑 ↓ 0.050
𝑇 𝑠 ↓ 2.775

𝑄 ↑ 0.420
𝜃 ∘ ↓ 0.001
𝑑 ↓ 0.065
𝑇 𝑠 ↓ 18.824

(a) RVD (b) D-RVC

(c) Ours (Uniform) (c) Ours (Adaptive)

Figure 13: Comparison results of different methods on the Elk
model with close sheet topology.

As shown in Figure 13, RVD calculates the exact intersections
between 3D Voronoi cells and surfaces, producing relatively better
triangular meshes with no topological errors or outliers. However,
the calculation of precise intersections is too complicated and time-
consuming, and the surface curvatures are not considered in sur-
face remeshing. Different from RVD, D-RVC and our method uti-
lize planar polygonal facet to approximate the original surface with
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(a) (b) (c) (d) (e) (f)

Figure 14: Experimental results for the weighted sample point ablation on the Homer and Rocker models. Top: results with unweighted
sample points; bottom: results with weighted sample points. (a) Optimized sample points on the Homer model, (b) optimized PowerRTF on
the Homer model, (c) generated triangular meshes on the Homer model, (d) optimized sample points on the Rocker model, (e) optimized
PowerRTF on the Rocker model, and (f) generated triangular meshes on the Rocker model.

consideration of curvature adaption, greatly improving the compu-
tational efficiency. However, the sample points in D-RVC are pro-
jected onto a best-fitting plane using the k nearest neighbors, lead-
ing to the appearance of outliers and topological errors, as shown
in Figure 13(b). Fortunately, our method restricts the movement of
sample points on the original surface to avoid the outliers in opti-
mizing stage. Moreover, a normal verification is applied during the
normal estimation, PowerRTF construction, and position optimiza-
tion phases in our method, which circumvents the impact of inverse
side points, generating more accurate PowerRTFs and meshes. In
terms of surface curvature adaption, the densities of sample points
at close sheet regions are similarly high in D-RVC. Our method
could capture the variation of densities more accurately in close
sheet regions. More precisely, the densities at the center of close
sheet regions are relatively low while densities at the corners or
edges are mostly high, as shown in Figure 13(d).

5.4. More results

To further demonstrate the effectiveness and advantages of our
method, we provide more experimental results, both from ablation
experiments and on more complex models.

Ablation experiment. A major contribution of our work is the
combination of the RTF with the power diagram. By introducing
weight characteristic to each sample point, we compute the power
cell on the corresponding tangent plane for each weighted sample
point. To evaluate the advantage of weighted sample point for adap-
tive surface remeshing, we conduct an ablation experiment on the

Homer and Rocker models. By keeping everything else the same
(including the initial strategy and NVISPC method described in
Section 4.3), we present experimental results for surface remesh-
ing with weighted and unweighted sample points, as shown in Fig-
ure 14, where the number of sample points is set to 3.0k, and the
Table 2 presents the quality of these generated triangular meshes.
According to the results in Figure 14 and Table 2, we could observe
that our method with weighted sample points could generate better
curvature-adapted approximative facets and the relevant triangular
meshes. In particular, for these high curvature regions, such as the
finger regions in the Homer model, our method with weighted sam-
ple points could achieve better curvature adaption by adjusting the
weights of sample points to control the size of approximative facets.

Furthermore, another contribution of our work is the proposed
NVISPC method. The NVIPC method is used in computing the
normal, pre-clipping power cell and position optimization of each
sample point, achieving more accurate normal, PowerRTF, and pro-
jected point results, as described in Section 4.3. Similarly, to val-
idate the importance of the NVISPC method in our method, we
carry out another ablation experiment on two close sheet surfaces,
i.e., the Disc and Fish models. In this experiment, we keep every-
thing else the same (including the initial strategy, weighted sample
points, etc., described in Section 4.3) and analyze the remeshing re-
sults with and without the NVISPC method. Figure 15 shows two
groups of remeshing results on different models, and the quality of
generated triangular meshes is provided in Table 2. The NVISPC
method could produce more accurate PowerRTF and triangular
meshes. By calculating the angle between the basic normal and the
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(a) (b) (c) (d) (e) (f)

(g)

Figure 15: Experimental results for the NVISPC ablation on the Disc and Fish models. Top: results of our method without the NVISPC,
bottom: results of our method with the NVISPC. (a) Optimized sample points on the Disc model, (b) optimized PowerRTF on the Disc model,
(c) generated triangular meshes on the Disc model. (d) optimized sample points on the Fish model, (e) optimized PowerRTF on the Fish
model, (f) generated triangular meshes on the Fish model.

Table 2: Triangle quality of meshes generated by our method, corresponding to these results in Figure 14, Figure 15, and Figure 16.

Model Result n Qmin ↑ Qavg ↑ Θmin ↑ Θmin ↑ Θ<30◦ ↓ Θ>90◦ ↓ dH(×10−2) ↓

Homer Figure 14(c)(Top) 3.0k 0.489 0.877 22.088 49.622 0.001 0.017 0.051
Figure 14(c)(Bottom) 3.0k 0.460 0.882 22.438 50.020 0.001 0.015 0.030

Rocker Figure 14(f)(Top) 3.0k 0.502 0.871 23.046 49.031 0.002 0.014 0.054
Figure 14(f)(Bottom) 3.0k 0.507 0.884 26.902 50.013 0.001 0.012 0.043

Disc Figure 15(c)(Top) 3.0k 0.066 0.710 2.260 38.072 0.256 0.316 0.049
Figure 15(c)(Bottom) 3.0k 0.308 0.836 12.474 46.605 0.019 0.079 0.022

Fish Figure 15(f)(Top) 3.0k 0.051 0.792 1.710 43.421 0.096 0.148 0.083
Figure 15(f)(Bottom) 3.0k 0.394 0.871 14.939 49.029 0.004 0.020 0.052

David Head Figure 16(b)(Top) 30.0k 0.350 0.875 14.376 49.605 0.001 0.021 0.036
Figure 16(b)(Bottom) 10.0k 0.472 0.882 20.497 50.030 0.002 0.018 0.075

Gargoyle Figure 16(d)(Top) 30.0k 0.275 0.883 13.172 50.231 0.001 0.016 0.043
Figure 16(d)(Bottom) 10.0k 0.408 0.880 19.571 49.914 0.001 0.022 0.039

normal of its neighboring vertices, these adjacent vertices with sig-
nificant angle variation are not considered in the pre-clipping pro-
cess. Thus, we could obtain more accurate PowerRTFs, as shown
in the Disc model in Figure 15(f). Similarly, the NVISPC method
is also used in the position optimization process to circumvent the
projection of sample points onto the inverse side, achieving bet-
ter remeshing results, as shown in the Fish model in Figure 15(g).
However, the NVISPC method is heuristic, and the quality of gen-
erated meshes may be degraded because of the frequency details on
close sheets or even complex models, as shown in Table 2.

Results on more complex models. It is a very challenging task
for approximative CVT-based remeshing techniques to produce
remeshing results of more complex models, e.g., RTF [YLW∗23],
etc. To demonstrate the capability of our method, two extremely
complicated models are taken as inputs of our algorithm, includ-
ing the David Head model and the Gargoyle model. Due to the
existence of more details in these complex models, we select a rel-
atively large number of sampling points for uniform remeshing. To
be specific, an comprehensive experiment is performed, where the

number of sampling points is set to 30.0k for uniform remeshing
and 10.0k with surface curvature adaption remeshing. Figure 16
demonstrate the remeshing results of our method on the David
Head and Gargoyle models, and Table 2 presents the quality of
these generated meshes. The blue models represent the optimized
PowerRTF results, and the yellow models indicate the triangular
meshes generated by our method on different cases. Besides, the
appendix video presents more remeshing results of our method.
From these results in Figure 16 and the appendix video, we could
observe that our method is also applicable for more complex sur-
face remeshing, which reflects the superiority of our method. How-
eve, the quality of generated triangular meshes is degraded on more
complex or close sheet with high frequency details.

6. Conclusion

In this paper, we introduce an improved technique of approxima-
tive CVT-based, called PowerRTF, for surface remeshing with cur-
vature adaption. To achieve it, we present an extension of RTF in
combination with the power diagram to curvature-adapted approx-
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(a) (b) (c) (d)

Figure 16: Remeshing results with our method on two more com-
plex models, including the David Head model and the Gargoyle
model. Top: uniform remeshing results with 30.0k sampling points;
and bottom: non-uniform remeshing results with 10.0k sampling
points. From left to right: (a) PowerRTF on the David Head model,
(b) generated triangular meshes on the David Head model, (c)
PowerRTF on the Gargoyle model, and (d) generated triangular
meshes on the Gargoyle model.

imate the original surface. We impose the variable-capacity con-
straint and centroidal constraint each sample point by relaxing the
capacity constraint to an interval, providing the trade-off between
mesh quality and computational efficiency. What’s more, an addi-
tional NVISPC method is provided to address the topological er-
rors and outliers, generating topological correct triangular meshes
in close sheet surface remeshing. Experimental results on various
models, including those in this paper, the supplementary materials,
demonstrate the effectiveness of our method.

Limitations and further work. There are still a few limitations in
our work. Firstly, there is a potential for short edges in PowerRTFs
and the triangular meshes, resulting in narrow or small-angle tri-
angles in the regions where curvatures change dramatically, which
affects the quality of generated meshes. This could be solved by ap-
plying a mesh improvement technique as postprocessing [YW15].
Another limitation is that remeshing with sharp feature models,
e.g., Fandisk, Block, etc., remains a challenge for our method, as
there is no guarantee that several sample points are moved on cor-
ners or edges. Finally, the efficiency of weight optimization has
an impact on the convergence of our method. Consideration may
be given to a numerical optimization technique that is similar to
RVC [CZC∗18], e.g., Newton’s method, the quasi-Newton method,
etc. What’s more, there is no theory to prove its validity as there are
gaps between the PowerRTF of each sample point.
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