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High-quality mesh surfaces are crucial for geometric processing in a variety of applications. 
To generate these meshes, polyhedral remeshing techniques truncate Voronoi cells of the 
original surface and yield precise intersections, but the calculation is complicated. Some 
methods apply auxiliary points to construct Voronoi diagrams to simplify these techniques, 
thereby extracting co-planar facets to approximate the original surface. However, extracting 
these approximate facets from the constructed Voronoi diagram makes it inefficient and 
non-parallelizable. To this end, we propose an efficient GPU method for manifold surface 
remeshing, where the restricted tangent face (RTF) is utilized to approximate the original 
surface. By intersecting the pre-clipped Voronoi cell with the tangent plane, this method 
directly calculates the RTF of each point without any auxiliary points or traversing Voronoi 
cells. Moreover, to restrict the movement of points, we introduce a projection method 
based on the KNN strategy, where each point is projected onto the triangular facet 
in the original surface. Owing to the independence and non-interference of the RTF 
computation and projection of each point, our method is implemented in parallel on the 
GPU. Experimental results on various mesh surfaces demonstrate the superior performance 
of our method in the viability, effectiveness, and efficiency.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Triangle surface mesh is frequently used for three-dimensional (3D) data representation in geometrical modeling (Decker 
et al., 2021), architectural modeling (Yang et al., 2018), and scientific visualization (Sullivan and Kaszynski, 2019) due to 
its effectiveness and simplicity. Previous work produces raw meshes by 3D scanning reconstruction (Chen et al., 2021) 
and computer vision method (Shazeer et al., 2018), etc. However, low-quality raw meshes are unsuitable for subsequent 
geometric processing in a variety of applications owing to small angles, short edges, irregular vertices (Liang and Zhang, 
2011; Engwirda and Ivers, 2014), etc. As an efficient technique for improving the quality of meshes, surface remeshing has 
received much attention from researchers in the past two decades.

Previous work (Du et al., 2003; Alliez et al., 2005; Ye et al., 2019) for generating meshes has achieved considerable 
advancements due to the emergence of polyhedral meshing algorithms (Yan et al., 2013; Yan and Wonka, 2015) based on 
the centroidal Voronoi tessellation (CVT) (Du et al., 1999). These methods either construct Voronoi diagrams on a surface 
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Fig. 1. Exemplification of the geodesic distance, RVD (3D), RPF (2D), and RTF (2D). (a) the geodesic distance between two points on a surface (highlighted 
with purple line); (b) RVD, intersecting Voronoi cells with the original surface; (c) RPF, extracting the co-facets of the power diagram constructed with 
shadow points; and (d) RTF, restricted tangent planes without auxiliary points or Voronoi diagram construction. Notably, (b) is generated by the code 
provided in Lévy and Liu (2010). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(e.g., the geodesic CVT (GCVT)) (Fu and Zhou, 2009) or truncate Voronoi cells of the original surface (e.g., the restricted CVT 
(RCVT), the restricted Voronoi diagram (RVD), etc.) (Yan et al., 2009, 2010), along with CVT optimization techniques (e.g., 
Lloyd’s method or the quasi-Newton method) (Lloyd, 1982; Liu et al., 2009) to produce remeshing surfaces. They can be 
regarded as exact-CVT-oriented methods as they calculate the geodesic distance or the intersection on the original surface, 
as shown in Fig. 1(a)(b). However, it is extremely difficult and time-consuming (several seconds per iteration, see Fig. 12) to 
calculate the precise geodesic distance or the intersection of Voronoi cells with the surface.

Several researchers (Zimmer et al., 2012; Chen et al., 2018) have recently concentrated on yielding high-quality meshes 
by employing approximate planes, e.g., the restricted power face (RPF) (Xu et al., 2019) in Fig. 1(c). They construct 3D 
Voronoi diagrams using extra sampling points (e.g., shadow points), filtering the co-planar facets of these boundary Voronoi 
cells as approximate planes (Abdelkader et al., 2020). These techniques, which are considered approximate-CVT-oriented 
methods, compute the CVT on these approximation planes during each iteration, producing remeshing results. Compared to 
Yan et al. (2013), they drastically reduce the necessary calculations and achieve better computational performance owing to 
the avoidance of truncating Voronoi cells on the original surface. Nevertheless, since they construct some inner Voronoi cells 
based on these extra sampling points, approximate-CVT-oriented methods consume excessive time and memory. Moreover, 
filtering these approximate planes by traversing the Voronoi diagrams could be more effective.

Therefore, we concentrate on the limitations of previous work on surface remeshing and take into account parallelization 
for speedups. In this paper, we propose an efficient GPU method for manifold surface remeshing without truncating Voronoi 
cells of the original surface. To achieve it, we adapt the concept of approximate CVT and fit the primordial surface using 
restricted tangent faces (RTF). Unlike existing methods (Xu et al., 2019), we are only interested in these planar facets of 
randomly initialized sampling points, and auxiliary points (Abdelkader et al., 2020) are unnecessary. Specifically, an efficient 
method is presented to directly calculate the tangent face of each sampling point instead of traversing the Voronoi diagram 
(Xu et al., 2019; Abdelkader et al., 2020). This method is well-designed, and the tangent face of each sampling point is 
calculated independently, which is easily implemented in parallel on the GPU. Thus, the sampling points are relocated to 
the barycenters of the respective tangent faces. Nevertheless, this may result in optimized points deviating from the original 
surface. To restrict the movement of sampling points and couple with the tangent face calculations on the GPU, we introduce 
a projection strategy based on k-nearest-neighbors (KNN), where each sampling point is projected onto the triangular facet 
on the original surface. The tangent facet computation and projection strategy are alternately and iteratively performed to 
generate the RTF, producing high-quality meshes. We contribute the following:

• a GPU-based method to directly calculate the RTF of sampling points without constructing or traversing Voronoi dia-
grams with auxiliary points.

• a GPU-based projection strategy via KNN method to restrict sampling points moving on the original surface.

The remainder of this paper is organized as follows. Sect. 2 briefly review some CVT-based methods for surface remesh-
ing. The preliminary of the Voronoi diagram, CVT and RPF is provided in Sect. 3. In Sect. 4, we introduce our method for 
generating high-quality meshes. Sect. 5 presents some remeshing results, and some conclusions are given in Sect. 6.

2. Related work

High-quality meshes are critical in various applications, i.e., geometrical modeling (Decker et al., 2021), scientific visual-
ization (Sullivan and Kaszynski, 2019), etc. Several techniques have been introduced to improve the quality of a given mesh, 
one of which is surface remeshing (Khan et al., 2022). The raw mesh is fed as input to a series of remeshing algorithms, 
generating another high-quality mesh. Existing work introduces a mount of remeshing algorithms, i.e., local modification-
based remeshing (Wang et al., 2018), segmentation-based remeshing (Khan et al., 2018a), and Delaunay triangulation (DT) 
based remeshing (Chen and Holst, 2011). An exhaustive review of remeshing techniques could be referred to Khan et al. 
(2022). Here we only give a brief review of the CVT-based remeshing methods, including two-dimensional (2D) CVT-oriented 
methods in Sect. 2.1, exact-CVT-oriented methods in Sect. 2.2, and approximate-CVT-oriented methods in Sect. 2.3.
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2.1. 2D-CVT-oriented remeshing

The CVT (Du et al., 1999) defines a particular partition of a given domain into several subregions, where each site 
corresponds to the barycenter of its subregion. Due to its excellent geometric properties, the CVT has been applied for 
surface remeshing, and a series of algorithms have been proposed (Du et al., 2003; Leung et al., 2015; Herholz et al., 2017; 
Ye et al., 2019; Yan et al., 2014; Abdelkader et al., 2020).

Alliez et al. (2005) introduce a CVT-based method for isotropic remeshing for triangulated surface meshes. They use 
a global conformal planar parameterization and apply Lloyd’s method in the parametric space using a density function 
designed to compensate for the area distortion due to flattening. However, the difficulty is that the density function is not 
specific, which may result in an undesirable remeshing result. Similarly, an adaptive meshing approach for heterogeneous 
materials is proposed in You et al. (2015), where the CVT and mesh extraction are on the basis of a density function 
associated with the material distributions. In contrast, this method is only suitable for 2D heterogeneous objects. Besides, 
two CVT variants for a general planar domain are presented in Khan et al. (2018b), which utilize an extended domain rather 
than the origin domain for computing the centroids. Still, this method is so limited that it only applies to the planar domain. 
Additionally, to speed up surface remeshing, Rong et al. (2010) introduce a GPU-assisted construction and optimization for 
CVT on 2D parameter spaces, which achieves better computation efficiency.

Although the 2D CVT could be easily constructed and optimized, the 2D CVT-based remeshing methods are either chal-
lenging to extend to 3D objects (Khan et al., 2018b) or rely on a specific density function (Alliez et al., 2005), resulting in 
the generated meshes with undesirable quality.

2.2. Exact-CVT-oriented remeshing

Different from the CVT computation in 2D parametric space, some methods try to directly compute the CVT on the 3D 
original space and then generate the remeshing results. These methods calculate the CVT on a surface (i.e., the GCVT) or 
truncate the 3D Voronoi diagram of the original surface (i.e., the RVD). Recently, many researchers have worked to design an 
efficient method for calculating the geodesic distance in the GCVT or the intersection of 3D Voronoi cells with the surface 
in the RVD.

In view of the GCVT, the crux is calculating the geodesic distance of any two points on the surface. Rong et al. (2011)
extend the concept of CVT from 2D space to 3D spherical space and provide a framework to compute the CVT. Zhuang et al. 
(2014) introduce an interactive method for mesh generation by calculating anisotropic geodesics. To improve the compu-
tational efficiency, they present a fast local subdivision method to calculate anisotropic geodesics from existing Euclidean 
geodesics, producing a comparable mesh for surfaces with sharp features. Wang et al. (2015) present two intrinsic meth-
ods to compute the centroid for any geodesic Voronoi diagram (GVD). Though the computational efficiency of the GVD is 
improved, there is no significant improvement in the generated surface quality. The 2D Possion disk sampling method (Yan 
and Wonka, 2013) is extended with consideration of geodesic distance by Fu and Zhou (2009). Liu et al. (2016) provide a 
manifold differential evolution (MDE) method for globally optimizing the energy of GCVT on a surface, yielding meshes of 
high quality. However, an essential limitation of the GCVT-based remeshing method is that the geodesic distance calculation 
is too complicated, resulting in inefficient geodesic path computation.

Considering the RVD, the key is the intersection between a Voronoi cell and the primitive surface, as shown in Fig. 1(b). 
Du et al. (2003) introduce constrained CVT (CCVT) on a surface where each vertex is constrained on the surface and coin-
cides with the barycenter of the Voronoi cell on the surface. However, the local minimum problem of the energy function 
in this method is still a challenge. Yan et al. (2009) propose another CVT-based method for surface remeshing, called RVD, 
which computes the exact RVD based on the quasi-Newton method. To eliminate the triangles with small or obtuse angles, 
they further extend the exact RVD energy function with a penalty function (Yan and Wonka, 2015) to avoid the existence 
of short edges. However, the limitation of this work is the lacking of termination guarantees for more complex models or 
sharp features. Additionally, by discretizing the original surface into voxels, Leung et al. (2015) compute the exact Euclidean 
distance transform (EDT), 3D CVT, and RVD on the GPU, which is highly efficient. Nevertheless, this method is limited by 
the graphical memory, especially for more complicated models. Recently, a field-aligned method (Du et al., 2018) based on 
RVD has been introduced for surface remeshing. They minimize an energy function that combines both CVT and the penalty 
enforced by a six-way rotational symmetry field, but the interpolation is inefficient. Several extensions of the RVD have 
been presented for surface remeshing in some particular applications, such as the thin-plate models (Wang et al., 2020), 
signed distance field (Hou et al., 2022) and triangulated surfaces (Sainlot et al., 2017), etc. However, the intersection be-
tween Voronoi cells and the primal surface is necessary for these RVD-based remeshing methods, which leads to complex 
computation and more time consumption.

To summarize, exact-CVT-oriented remeshing methods rely on calculating the geodesic distance between any two points 
on the surface or the intersection of a Voronoi cell with the surface. Nevertheless, both of these calculations are complex 
and time-consuming, leading to inefficient remeshing of these methods.
3
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2.3. Approximate-CVT-oriented remeshing

Tangent plane intersection (TPI) (Zimmer et al., 2012) approximates the intersection between Voronoi cells and the 
original surface, significantly reducing the computation complexity in RVD (Yan et al., 2009). Recently, computing the CVT 
on an approximation planar has received much attention for surface reconstruction or remeshing.

Chen et al. (2018) extend the CVT to point clouds and generate meshes from high-quality input points. The critical of 
this method is that the CVT computation is on the point cloud by restricting each Voronoi cell to the underlying surface. 
However, the underlying surface is approximated by a set of best-fit planes closely related to the number of sampling points. 
Especially for curved regions, this method produces a poor approximation, resulting in low-quality remeshing results. Xu 
et al. (2019) introduce the RPF to approximate the intersection in RVD (Yan et al., 2009) to produce meshes. They define 
a set of shadow points outside the surface boundary, and each is assigned a specific weight. Based on the sampling points 
and shadow points, they constructed a power diagram from which the RPF of each sampling point could be extracted. 
However, this method is affected by the location of shadow points, which may cause low-quality or failure remeshing 
results. Besides, extracting the RPF from the power diagram requires traversing all vertices, which is too complicated and 
unparalleled. Recently, a robust remeshing approach called VoroCrust (Abdelkader et al., 2020) introduces a placement 
strategy of points for surface remeshing without Voronoi clipping. The co-planar facets generated by the points on different 
sides of the boundary are utilized as approximation planes. Nevertheless, extracting the co-planar from the constructed 
Voronoi diagram, similar to Xu et al. (2019), requires more time and cannot be parallelized. Moreover, this method fails to 
eliminate short edges and hole filling, affecting the quality of meshes.

In summary, existing methods employ auxiliary points and sampling points, to construct Voronoi/power diagrams, from 
which the co-planar facets are extracted as the approximate planes (Xu et al., 2019; Abdelkader et al., 2020). However, this 
method is complicated, time-consuming, and non-parallelizable. Others take high-quality point clouds without outliers or 
noises as inputs to generate meshes (Chen et al., 2018). However, this suffers from the number of sampling points and may 
generate low-quality meshes, especially for those with curved regions, as shown in Fig. 11. With this regard, we borrow the 
idea of approximate CVT (Xu et al., 2019) and introduce an efficient GPU method for generating high-quality meshes with 
truncating Voronoi cells, where the RTF is utilized to fit the original surface. To be specific, we directly calculate a CVT on 
the RTF and optimize the relevant sampling point to its barycenter. Moreover, we introduce a KNN based projection strategy 
to project each sampling point onto the triangular facet in the original surface instead of a best-fit plane affected by the 
number of sampling points (Chen et al., 2018). Owing to the independence of the RTF computation and projection of each 
sampling point, our method is implemented in parallel on the GPU.

3. Preliminary

In this section, we provide an overview of the power diagram, CVT and RPF in sequence.

3.1. Voronoi diagram & power diagram

The Voronoi diagram, also called “Voronoi tessellation”, defines a 
spatial subdivision of a given N-dimensional domain � ⊂RN into sev-
eral subregions. Given a set S = {si}n

i=1 of n distinct points (also called 
“sites” or “generators”) in �, the Voronoi diagram divides the domain 
� into n disjoint regions V (S) = {V (si)}n

i=1 based on the Euclidean 
distance, as shown in the inset (left). Each region V (si) of the point si , 
called Voronoi region, is defined as:

V (si) = {s ∈ �|‖s − si‖ ≤ ‖s − s j‖,∀ j �= i} (1)

where d(s, si) = ‖s − si‖ denote the Euclidean distance of two points s and si .
The Power diagram (Aurenhammer, 1987), as an extension of the Voronoi diagram, introduces weights W = {wi}n

i=1 to 
points. That is, each point si is associated with a parameter wi . Each region P (si), called power cell, is redefined as:

P (si) = {s ∈ �|‖s − si‖2 − wi ≤ ‖s − s j‖2 − w j,∀ j �= i} (2)

where dp(s, si) = ‖s−si‖2 − wi is redefined as the power distance of points s and si . Notably, the power diagram degenerates 
to the Voronoi diagram when the weights of all points are equal (Aurenhammer et al., 1998).

3.2. CVT

By imposing centroidal constraint to ordinary Voronoi diagram and power diagram, two extensions of the Voronoi dia-
gram can be generated: CVT (Liu et al., 2009) and centroidal power diagram (CPD) (Zheng et al., 2021). Taking the CVT as 
an example, each point si is located at the barycenter s∗

i of its Voronoi region V (si), and the barycenter s∗
i can be calculated 

as:
4
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s∗
i =

∫
V (si)

ρ(s)sds∫
V (si)

sds
(3)

Equivalently, CVT can be obtained by minimizing the following term:

Q (S) =
n∑

i=1

∫

V (si)

ρ(s)‖s − si‖2ds (4)

Lloyd’s (Liu et al., 2009) and quasi-Newton methods (De Goes et al., 2012) are the most popular implementations of 
CVT/CPD. The former is the simplest way to generate CVT, which moves each site to the mass center of its Voronoi cell 
in each iteration. The latter applies a quasi-Newton-like solver to compute the CVT/CPD. Compared to Lloyd’s method with 
linear convergence, the quasi-Newton method with super-linear convergence is more efficient (Xin et al., 2016).

3.3. RPF

Given a point si on surface M, associated with a shadow point ss
i = si + d · nsi , where nsi is the normal of si and d is 

the offset. The weight of the point si is wi = 0, while ws
i = ‖si − ss

i ‖2 is set for the corresponding shadow site ss
i . The point 

si is therefore typically located on the equal power distance facet, and Xu et al. (2019) introduce the RPF Fi :

Fi = {τ |τ ⊂ P (si), τ ⊂ P (ss
i )} (5)

Obviously, the RPF Fi is defined as the co-planar facet of their power cells P (si) and P (ss
i ), as illustrated in Fig. 1(c). 

Based on the CVT framework implemented with CGAL (Fabri and Pion, 2009), they provide a method to compute the RPF (Xu 
et al., 2019). To be specific, they first compute the regular triangulation of all sampling points and shadow points, thereby 
constructing the power diagram based on the duals of regular triangulation. To the best of our knowledge, the power 
diagram construction in this way is not parallelizable. Moreover, the co-planar facet, i.e., RPF, of the respective power cells 
of each sampling point and the relevant shadow point is highly dependent on the power diagram construction. Extraction 
of these co-planar facets is performed by traversing all vertices of each power cell only if the power diagram construction 
is done, which is inefficient.

Contrary to previous work (Xu et al., 2019), these shadow points and their weights in RPF are not necessary in our 
work. We are only concerned with cutting the tangent planes to generate approximative facets. Therefore, in this paper, we 
simplify the notion of RPF as RTF, which could be directly computed by truncating Voronoi cells of the tangent planes, as 
shown in Fig. 1(d). In the absence of misunderstandings, we also utilize Fi as the RTF of sampling point si . In this paper, 
we provide an efficient GPU-based method to directly compute the RTF without any auxiliary points (e.g., these shadow 
points in RPF) or power diagram construction, which is described later.

4. Our methodology

The main components of our methodology are 1) the GPU-based computation of the RTF (Sect. 4.2) and 2) the projection 
strategy to restrict the sampling points moving on the original surface (Sect. 4.3). Note that the KNN method serves as the 
foundation for both modules. Additionally, the CVT-based optimization for the RTF and final mesh extraction (Sect. 4.4) are 
provided in this section.

4.1. Overall idea

Based on the ideas of TPI (Zimmer et al., 2012) and RPF (Xu et al., 2019), we propose an efficient GPU method for surface 
remeshing, where the restricted tangent faces are introduced to approximate the original surface. Unlike Xu et al. (2019), 
our method computes RTF directly from the sampling points and their normal directions without these shadow points or 
power diagram construction. In addition, a projection strategy is introduced to restrict the movement of sampling points on 
the original surface to generate a more accurate mesh. Notably, the RTF computation and projection strategy are based on 
the KNN method. Thanks to the open-source KNN method (Garcia et al., 2008), the RTF computation and projection strategy 
are well-designed and implemented in parallel with GPU acceleration. Thus, they are iteratively performed by computing a 
CVT, and the final meshes are generated from the optimized sampling points.

Given that the input mesh surface M = {Vm, T m} is composed by a set of vertices Vm = {vm
i }nm

v
i=1 and a set of triangles 

T m = {tm
i }nm

t
i=1, where nm

v and nm
t are the number of vertices and triangle facets. Each triangle facet ti is represented by three 

ordered vertices, with indices 0, 1 and 2. Any combination of two vertices forms an edge of ti . The sampling points set is 
represented as S = {si}n

i=1, and the corresponding RTF set of all sampling points is denoted as F = {Fi}n
i=1. The RTF Fi of 

sampling point si is composed by a set of vertices, that is, Fi = V f
i = {v j}nFi

j=1, where nFi represents the number of RTF 
vertices.
5
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Fig. 2. Overall remeshing process of the Kitten model with our method. (a) input mesh (12.5K vertices, 25.0K faces); (b) initial tangent faces of sampling 
points (10.0K); (c) optimized restricted tangent faces; (c) reconnected restricted tangent faces; and (e) remeshing result (10.0K vertices, 20.0K faces).

Algorithm 1: Remeshing method based on RTF computation.
Input: origin mesh M , number of sampling points n, error termination ε , max iteration number maxiter

Output: remeshing result M ′
1 Initialization: S = {si}n

i=1 are randomly sampled from M
2 while δ > ε & nbiter < maxiter do
3 estimating normals N = {ni}n

i=1 of sampling points S // Normal estimation, Sect. 4.2
4 for si ∈ S in parallel do
5 computing the RTF Fi of the point si // RTF computation, Algorithm 2, Sect. 4.2
6 calculating the barycenter bi of the RTF Fi // RTF barycenter, Eq. (7), Sect. 4.2

7 computing bp
i by projecting the bi to surface M // projection strategy, Algorithm 3

8 δi = |si − bp
i | // distance error of current point

9 si ← bp
i // point optimization, Sect. 4.4

10 end
11 δ = maxi=1,2,··· ,n{δi} // max distance error
12 end
13 Extraction: generating mesh M ′ from the optimized points S // remeshing, Sect. 4.4

It should be mentioned that the sampling points are randomly sampled from the input surface M in an initialization 
stage. The pseudo code of our method for surface remeshing is provided in Algorithm 1, and the remeshing process is given 
in Fig. 2. Our method consists of the following steps:

a) computing the RTF and barycenter of each sampling point directly; (Sect. 4.2)
b) projecting the barycenter (optimized sampling point) onto the input surface; (Sect. 4.3)
c) extracting triangle meshes from the optimized sampling points. (Sect. 4.4)

In fact, the sampling initialization in our method could be easily extended to weighted sampling or anisotropic sampling 
(Chen et al., 2018) to capture the surface curvatures.

4.2. RTF computation

Previous work (Xu et al., 2019) computes the RPF based on the CVT framework with CGAL (Fabri and Pion, 2009) on the 
CPU. The RPF is filtered from the 3D power diagram by traversing the vertices of each power cell. Notably, as the shadow 
point is determined based on the normal of each sampling point in RPF (Xu et al., 2019), we observe that the RPF of a 
sampling point resembles its tangent plane. Thus, we simplify the calculation of RPF by computing the RTF in this paper. 
Based on the 3D clipped framework (Ray et al., 2018), we design a GPU-based method to compute the RTF based on the 
sampling point and its normal direction. Fortunately, the computation of the barycenter, volume, or integral of Voronoi cell 
is unnecessary in our method, and we are only interested in the intersection of RTF. Thus, the computational efficiency of 
the 3D clipped Voronoi diagram framework is further improved in our method.

To be specific, we use a pre-clipping for each sampling point si to compute a convex cell Vi by clipping an initialized 
bounding box. The pre-clipping is based on the orthogonal duals with the k-nearest-neighbors of si . Then, we directly 
compute the equation of a half-space plane, called the RTF plane, by the sampling point si and its normal direction ni . 
Thus, the convex cell Vi is further clipped by the RTF plane to obtain the exact RPF vertices Fi = {v f

i }nFi
i=1, that is the 

RTF-clipping process. The flow of our RTF computation method is shown in Fig. 3, and the pseudo-code is presented in 
Algorithm 2. The detailed description of each step in the RTF computation method is given as follows.

KNN & Pre-clipping. The RTF computation method is on the basis of the 3D clipped Voronoi diagram framework (Ray 
et al., 2018; Liu et al., 2022), in which a key technique is the KNN method. The k-nearest-neighbors Sk

i of each sampling 
point si are used to clip a convex cell Vi in the pre-clipping process. Some efficient implementations of the KNN method 
are available, such as the multi-threading KNN on the CPU (Yan and Qixiang, 2009) or the parallelized KNN on the GPU 
6
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Fig. 3. The RTF computation process of a sampling point si on surface. Top: an overview of the RTF computation; (a) a convex cell initialized with bounding 
box, (b) the pre-clipped convex cell, (c) the half-space plane (RTF plane), and (d) the obtained RTF (red colored). Bottom: exemplification of the pre-clipping
in 2D and the half-space plane; I(1) sampling points, I(2) k-nearest-neighbors of si , I(3) pre-clipping process, and II(1) half-space plane PFi .

Algorithm 2: GPU-based computation for RTF.
Input: sampling points S, points normal N = {ni}n

i=1
Output: RTF F = {Fi}n

i=1
1 for si ∈ S in parallel do
2 Vi ←− Bounding Box(si) // initialize a convex cell
3 Sk

i ←− k-nearest-neighbors // KNN

4 Vi ←− clipping by the orthogonal duals of Sk
i // pre-clipping

5 PF
i ←− plane equation of Fi based on Eq. (6) // RTF equation

6 Fi ←− clipping by the RTF plane PFi // RTF-clipping

7 end

(Garcia et al., 2008). Owing to the purpose of parallelized computing RPF on the GPU, we use the simple and open-source 
Brute-and-Force strategy (Garcia et al., 2008).

Once the k-nearest-neighbors Sk
i of a sampling point si are obtained, the pre-clipping process is performed as follows. 

The bounding box of the primordial surface is used to establish a convex cell Vi of the sampling point si . After obtaining 
the k-nearest-neighbors Sk

i , a pre-clipping step is then carried out to clip the convex cell Vi by the orthogonal duals of the 
sampling point si and its Sk

i . Fig. 3(I(1)–I(3)) illustrates the pre-clipping process in two dimensions, that is similar to Ray 
et al. (2018). However, the k-nearest-neighbors Sk

i are often close to the RTF plane PFi (but usually not on the RTF plane), 
which may lead to superfluous clippings and result in a thin polyhedral cell. These meaningless clips do not impact the RTF 
results, but they lengthen computation times.

In our method, a two-virtual-point clipping pro-
ceeds before the pre-clipping stage, aiming to pro-
duce a suitable convex cell, which is further clipped 
by the orthogonal duals of its neighbors, as shown 
in the illustration. For each sampling point si on 
the original surface, associated with a normal ni , 
the two virtual points sv1 and sv2 are defined as: 
sv1 = si + d · ni and sv2 = si − d · ni , where d is the 
offset of virtual points. In fact, due to the orthogo-
nal duals of virtual points and the RTF being parallel, the value of d has no impact on the RTF results, and we set d to 20 
in our work. By taking advantage of two-virtual-point clipping, our method avoids the unnecessary intersection (red circle 
in the illustration (a)) in the subsequent pre-clipping stage, improving the RTF computation efficiency.

Normal estimation & RTF plane equation. The normal estimation of each sampling point si on the surface, which is 
intimately connected to the RTF plane PFi , is a crucial step in our methodology. In actuality, the RTF plane equation PFi

could be calculated using nothing more than the normal direction and position of sampling point si . The underlying idea of 
the normal estimation is to establish an approximation plane using the k nearest neighbors, whose normal represents the 
estimated normal of the sampling point si .
7
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Fig. 4. The RTF extraction and symbolic representation in our method. Left: the RTF extraction process; (a) a convex cell Vi , (b) vertices of the RTF Fi , and 
(c) the barycenter bi of Fi . Right: the symbolic representation in GPU; (d) the vertex storage of Vi , (e) the vertex storage of Fi , and (f) the storage of RTF 
barycenter bi .

In our method, we immediately utilize the Point Cloud Library (PCL) (Rusu and Cousins, 2011) to determine the normal 
direction of each sampling point in S since PCL has been designed to perform the function of normal estimation. After 
acquiring the normal directions of sampling points S, we could immediately calculate the related RTF plane equation, as 
shown in Fig. 3 II(1). To be specific, let ni = (x′

i, y
′
i, z

′
i) represent the normal of the sampling point si = (xi, yi, zi), and the 

equation of PFi could be calculated as follow:

PFi : x′
i · x + y′

i · y + z′
i · z − ni · si = 0 (6)

RTF-clipping & Symbolic representation. A further intersection (called RTF-clipping) of the pre-clipped convex cell from 
the preceding section with the RTF plane yields the precise RTF result that is similar to the pre-clipping process. In contrast 
to the truncation of Voronoi cells of the input mesh producing partial surface (Yan et al., 2009), the intersection in our 
method creates a bounded plane considerably more efficiently.

The data structure of the 3D clipped Voronoi diagram is fully described in Ray et al. (2018). A convex polyhedron is 
typically composed of a set of vertices and half-space plane equations. Each vertex is represented by a dual triangle, i.e., IDs 
of the half-space planes. However, there is neither an explicit storage structure for each facet in a Voronoi cell nor an order 
storage for the vertices of the Voronoi cell. Thus, additional post-processing is necessary for extracting vertices of a specific 
facet. Fortunately, we observe that these intersections are ordered in the latest clipping, which could be directly extracted 
without traversing all vertices of the Voronoi cell. By making use of this observation, a well-designed clipping procedure 
is described in our method, where the RTF-clipping is viewed as the last stage in the RTF computation process. As a result, 
instead of traversing all vertices in the convex polyhedron Vi , the vertices {v j}nFi

j=1 of an RTF Fi could be directly derived 
from the latest incision, as shown in Fig. 4. Moreover, the barycenter bi of the RTF PFi could be easily calculated as:

bi = 1

nFi

·
nFi∑
j=1

v j (7)

4.3. KNN-based projection strategy

As previously explained, we parallelly calculate the RTF barycenters Bi of sampling points S = {bi}n
i=1 on the original 

surface M. Thus, in each iteration, the sampling points are updated to their relevant barycenters. This, however, can only 
produce unconstrained points that may diverge from the original surface M, causing remeshing outputs with significant 
errors or failures. With this regard, we borrow the notion of pulling back in Chen et al. (2018) and design a KNN-based 
projection strategy to prevent the sampling points from moving off the original surface M.

To achieve this, we directly employ the triangular facets on the original surface rather than the approximate underlying 
surface derived using a best-fitting plane in Chen et al. (2018). Similar to the previous RTF computation, our objective is 
to independently project each barycenter bi onto the original surface M, which could be accomplished in parallel by GPU 
acceleration. Due to the successful application of the KNN method in the above text, we also utilize it in the projection 
strategy. Specifically, we firstly seek for the k-nearest-neighbor vertices Nk

i of each RTF barycenter bi from the original 
surface M, as shown in Fig. 5(a). Then, the triangular facets from M with at least one vertex v p in Nk

i are easily acquired. 
Thus, the barycenter bi is projected onto the triangular facets, and the nearest point is chosen as the projected point bp

i . 
The pseudo of the KNN-based projection strategy is provided in Algorithm 3. Given the process of projecting the barycenter 
bi onto a triangular facet t j , two main cases are considered in our method:
8
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Fig. 5. Illustration of the projection strategy using the k-nearest-neighbor vertices Nk
i , where the target facet is represented by the purple colored triangle 

t j . (a) the k-nearest-neighbor vertices (purple dots) from original surface M of the barycenter bi (blue dot); (b) the barycenter bi is projected onto the 
triangle t j , generating the projected point bp′

i j ; and (c) the barycenter bi is projected outside the triangle t j (yellow dot), and a further projection is utilized 
to produce the projected point bp

i j (red dot) with nearest projection distance (red line).

Algorithm 3: KNN-based projection strategy.
Input: original mesh surface M , RTF barycenter B = {bi}n

i=1
Output: projected points Bp = {bp

i }n
i=1

1 for bi ∈ B in parallel do
2 Nk

i ← k-nearest-neighbor vertices from original surface M
3 for each triangle t j(∃v p ∈ t j , v p ∈ Nk

i ) do
4 bp

i j ← the projected point on the triangle t j of bi

5 dp
ij ← the projection distance d(bi , bp

i j)

6 end
7 sorting all projection distances {dp

ij} in ascending order

8 bp
i ← bp

i j with the minimal projection distance

9 end

a) the barycenter bi is projected inside the triangular facet t j (including the boundaries), as shown in Fig. 5(b);
b) the barycenter bi is projected outside the triangular facet t j , as shown in Fig. 5(c).

The projected point bp
i j of the RTF barycenter bi on the triangular facet t j is straightforward in case a). While in case b), 

the early projection bp′
i j of the barycenter bi lies outside of the triangular facet t j , as shown in the yellow dot in Fig. 5(c). 

Therefore, a further projection of bp′
i j onto the edges of the triangular facet t j is required, as shown in the green lines in 

Fig. 5(c). At this point, we could calculate the normal of t j through its three vertices, then combine it with one edge e ∈ t j , 
to obtain an exact plane P vir . The point bp′

i j is further projected onto the plane P vir , which ensures the projection point 
falls on the edge e or its extension, as shown in the green and red dots in Fig. 5(c). Only these points on the edges of the 
triangular facet are taken into account, and the projection point bp

i j of the RTF barycenter bi is determined to be the point 
with the minimal projection distance, as shown the red dot in Fig. 5(c).

Consequently, each RTF barycenter bi could be effectively restricted onto the original surface M by the two cases a) and 
b) above. Theoretically, there may be a corner case where the projection of the barycenter bi onto the triangular facet t j in 
Fig. 5(c) is not on any edge of t . At this time, the barycenter bi is away from any vertex of the triangular facet t j . In our 
method, this corner case is well avoided due to the usage of the KNN method. The reason is that several nearest neighbors 
Nk

i of the barycenter bi are calculated so that each triangular facet t j containing a vertex from Nk
i is not too far from the 

current barycenter bi . Notably, the vertex v p ∈ Nk
i is taken as the projection point bp

i j in the corner case to circumvent 
exceptions in the implementation of our method.

4.4. Optimization & mesh extraction

To generate high-quality meshes on the basis of the RTF computation, optimization and mesh extraction are two addi-
tional steps in our method, which are described in the following.

Optimization. For CVT optimization, the existing methods mainly involve Lloyd’s method (Lloyd, 1982) with linear con-
vergence and the quasi-Newton method (Liu et al., 2009) with super-linear convergence, e.g., the L-BFGS method (Xin et al., 
2016). For instance, Alliez et al. (2005) optimize each sampling point in 2D parametric space using Lloyd’s method. Yan 
et al. (2009) compute the CVT based on the quasi-Newton method, which is faster than Lloyd’s method. However, in our 
method, there may be gaps or misaligned facets in the RTF of sampling points, as shown in Fig. 2. These misaligned facets 
9
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Fig. 6. Exemplification of RTF vertices reconnection in our method. (a) and (b) three co-circular sampling points; (c–e) four co-circular sampling points; (f) 
triangular meshes of equal quality in four co-circular sampling points; and (g–h) triangular meshes of different quality in four co-circular sampling points.

lead to difficulties in the computation of the laplacian operator matrix. Therefore, we turn to the simple and easy Lloyd’s 
method to compute CVT, that is, the sampling point optimization.

To be more specific, the optimization of sampling points in our method works as follows: 1) the RTF Fi computation 
of each sampling point si by Algorithm 2; 2) the barycenter bi calculation of each RTF Fi based on Equation (7); 3) the 
projection bp

i of the barycenter bi onto the original surface M by Algorithm 3; and 4) the update of each sampling point 
si based on bp

i . The four steps are performed in parallel on the GPU (lines 5–7 in Algorithm 1), and we also calculate the 
distance error δi between the sampling point si and its projected point bp

i (line 8 in Algorithm 1) in each iteration. This 
optimization process is repeated until the convergence, or the maximum iterations are reached.

Mesh extraction. After the optimization process, we could obtain regularly distributed sampling points. Then, a mesh 
extraction process is used to produce the triangle meshes. However, as shown in Fig. 2(c), the misaligned facets in the 
optimized RTF make it almost impossible to directly generate the desired triangle mesh as the connectivity is ambiguous. 
One straightforward way is the reconnection strategy presented by Xu et al. (2019), where circumcenters for being dual are 
computed by clustering the neighbors of sampling points, from which the triangle meshes could be generated. Specifically, 
as shown in Fig. 6(b) and (d), these red dots are merged as two dual circumcenters, and each of them is correlated to several 
RTFs. Typically, a circumcenter is associated with three RTFs, and the corresponding clustered neighbor sampling points are 
reconnected as a triangle in our output, as shown in Fig. 6(a–b). In the degenerate cases, there are four co-circular sampling 
points on the same plane, as shown in Fig. 6(c–e). As shown in Fig. 6(g–h), two triangular divisions could be obtained. The 
division yielding higher-quality triangles is selected as the output in our method. In particular, when the quality of triangles 
in two different divisions are of the same quality, either of these two divisions is feasible in our method, as shown in 
Fig. 6(f).

Another robust way for mesh generation is the RVD-based mesh extraction method in Boltcheva and Lévy (2017), which 
is provided in Geogram (Lévy and Filbois, 2015). This method takes as input a filtered pointset and connects the input 
points with triangles by computing their restricted Voronoi diagram. An essential requirement of this method is a high-
quality point set, which coincides with the output of the optimization process in our method. Therefore, the regularly 
distributed sampling points generated by the optimization process taken as the inputs of the RVD-based mesh extraction 
method is also an efficient way to produce triangular meshes of high quality.

5. Evaluation

In this section, we present various computational results to demonstrate the potency and usefulness of our remeshing 
method. The proposed algorithms are implemented using C++. The 3D clipped Voronoi diagram framework (Ray et al., 2018) 
is applied to compute the pre-clipped convex cell, and the normal directions are estimated using PCL 1.8.1. All experiments 
are performed on a Windows 10 computer with 3.6 GHz Intel (R) Core (TM) i7-9700K GPU with 16 GB memory and an 
NVIDIA GeForce RTX 2080 Ti with 11 GB memory, using CUDA version 10.0.

GPU specific. The ability of our method to compute each RTF independently is friendly for a GPU implementation. Here 
we provide some implementation details of our method. Similar to the 3D clipped Voronoi diagram (Ray et al., 2018), the 
sets for vertices and plane equations are stored in shared memory arrays of constant size max #T and #P , respectively. The 
value of #T is set to 96, and #P is 64 in our experiments. The number of threads by blocks is set to 16, and the maximum 
iterations are 160. Moreover, the parameter k of k-nearest-neighbor is crucial in our method, which is described in detail 
in our experiments. Here, the default values are given as follows: knor = 16 in the normal estimation stage, kclip = 32 in the 
pre-clipping stage, and kproj = 16 in the KNN-based projection stage.
10
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Fig. 7. Remeshing results of various models. From top to bottom: input meshes, optimized RTF and output meshes. From left to right: remeshing of the 
Rocker model with 8.0K vertices, Kitten model with 12.0K vertices, Moai model with 15.0K vertices, Botijo model with 20.0K vertices, Bunny model with 
25.0K vertices and Egea model with 30.0K vertices. The percentage of RTFs with fewer than five or more than seven vertices in each result is reported: 
1.400% (112/8000 in Rocker), 2.02% (242/12000 in Kitten), 2.23% (334/15000 in Moai), 1.96% (392/20000 in Botijo), 2.36% (591/25000 in Bunny), and 3.56% 
(1067/30000 in Egea).

Fig. 8. Remeshing results of the F ertility model with different numbers of sampling points. From left to right: input model with 44.0K vertices, result with 
10.0K sampling points (18.294 seconds), result with 20.0K sampling points (35.434 seconds), and result with 30.0K sampling points (62.906 seconds).

5.1. Qualitative evaluation

We now provide some computational results to evaluate the feasibility of our remeshing method. Firstly, we conduct an 
experiment on several models with different numbers of vertices, including the Rocker, Kitten, Moai, Botijo, Bunny and Egea
models. The remeshing results of these models with our method are presented in Fig. 7. Then, we also test our method on 
one model (that is, the Fertility model), where the number of sampling points is set to 10.0K, 20.0K, and 30.0K. All sampling 
points are randomly sampled from the input surface (as shown in Fig. 8(a)), and the output meshes are illustrated in 
Fig. 8(b–d). According to these results in Fig. 7 and Fig. 8, we can observe that our method is feasible for surface remeshing, 
and the obtained results are of higher quality than the raw meshes.
11
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Fig. 9. Computational efficiency of our method with various amount of sampling points. (a) computational timing in each iteration with the Fertility model; 
(b) the corresponding triangle quality of the results in (a).

Table 1
Quality of output meshes with our method, corresponding to these results in Fig. 7.

Model In/Out #V 1 #F 2 Q min Q avg θmin θmin.avg θ<30◦ θ>90◦ dH
3 T (s)

Moai
Input 23.2K 46.4K 0.005 0.709 2.672 38.048 0.244 0.356 – –
Output 15.0K 30.0K 0.603 0.921 31.477 53.173 0.000 0.001 0.023 22.167

Botijo
Input 10.7K 21.4K 0.026 0.669 1.571 35.332 0.336 0.399 – –
Output 20.0K 40.0K 0.597 0.914 32.029 52.670 0.000 0.001 0.041 39.864

Bunny
Input 35.3K 70.6K 0.008 0.715 4.825 36.946 0.068 0.138 –
Output 25.0K 50.0K 0.572 0.895 27.112 51.187 0.001 0.003 0.015 57.639

Egea
Input 50.0K 100.0K 0.030 0.631 1.246 36.424 0.029 0.104 – –
Output 30.0K 60.0K 0.578 0.897 26.853 51.028 0.003 0.005 0.075 76.481

1 number of vertices; 2 number of facets; 3 Hausdorff distance (×10−2).
Notably: the quality of Rocker, Kitten is referred to Table 2.

5.2. Quantitative evaluation

The quantitative results of some remeshing models using our method are reported in this section. We introduce mesh 
quality metrics to evaluate the computational efficiency, followed by a quality analysis and computational timings.

Mesh quality metric. The criteria in Khan et al. (2022) is utilized to assess the quality of generated meshes in our 
experiments. The quality of a triangle t in the mesh surface M is determined as Q t = 6√

3
· At

St Et
, where the area, half-

perimeter, and the length of the longest edge of the triangle t are represented by At , St , and Et , respectively. Thus, Q min
and Q avg , which indicate the minimal and average triangle quality of the mesh surface, are utilized to quantify the mesh 
quality. Similarly, the average of the minimum angles in all triangles is θavg , and the minimum angle is θmin . The percentage 
of triangles with minimum angles less than 30◦ is designated as θ<30◦ , while the percentage of those with maximum angles 
of more than 90◦ is θ>90◦ . We also evaluate the quality of meshes by the approximation error in terms of Hausdorff distance 
error dH , which is normalized by the diameter of the bounding box. Moreover, the efficiency of the remeshing method is 
crucial to the subsequent geometric processing. Execution time is also taken into account as an important metric in our 
experiments to assess the efficiency of our method.

Quality analysis. Table 1 illustrates the quality of some output meshes generated by our method, corresponding to these 
remeshing results in Fig. 7. We can observe from the results in Table 1 that our method is effective for surface remeshing, 
and the quality of output meshes has significantly improved. Particularly, for the Rocker, Kitten, and Botijo models, the 
percentage of triangles with minimum angles smaller than 30◦ is decreased to 0, further demonstrating that our method 
yields high-quality remeshing results. However, for the special structures in these complex mesh surfaces, such as the ears 
in the Bunny model, our method yields slightly inferior triangles, which leads to a slightly lower quality of the remeshing 
results compared to these smooth mesh surfaces.

Efficiency analysis. The quantity of sampling points has an impact on the computational efficiency of our method. To 
demonstrate computational timings and the triangular quality of the remeshing results, we put the Fertility model to the 
test. Fig. 9(a) displays the computational timing profiles in each iteration, comprising the normal estimation (Normal), RTF 
and its barycenter computation (RTF), barycenter projection (Projection), and total time. As demonstrated in Fig. 9(b), we 
also offer the corresponding triangular quality of the remeshing results. According to the remeshing results in Fig. 9(a–b), 
we can observe that the triangular quality of the related results improves as the number of sampling points gradually grows, 
and so does the computational timing increases.
12
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Fig. 10. The impact of KNN parameter k at different stages of our method on the Torus (10.0K sampling points) and Bunny (20.0K sampling points) models, 
where knor is used for the normal estimation stage, kclip is applied for the pre-clipping stage, and kproj is utilized for the projection stage. Top: the impact 
of different values of knor , kclip , and kproj on the quality of generated triangular meshes. Bottom: the impact of different values of knor , kclip , and kproj on 
the running time of each iteration in the corresponding stages.

Parameter analysis. A crucial technique is the KNN method in our implementation, which is frequently used in different 
stages, including the normal estimation knor , the pre-clipping kclip , and the projection strategy kproj . To analyze the effect of 
different values of these parameters on the generated meshes, a comprehensive experiment is performed, where the number 
of sampling points is set to 10.0K for the Torus model and 20.0K for the Bunny model. Notably, when analyzing the effect of 
one parameter, the others are set to the default values in this experiment. Fig. 10 presents the quality of generated meshes 
and the relevant running time of each iteration on different values of knor , kclip , and kproj .

Overall, remeshing with more sampling points results in longer iteration running times. In view of the parameter knor , 
the requirement of our method is that more sampling points are used to capture the characteristics of complicated models. 
Thus, the generated meshes are typical of comparable quality. Considering the effect of the parameter kclip , a small value 
of the parameter kclip results in an inaccurate convex polyhedron and the respective RTF, leading to a poor-quality mesh. 
However, the quality of the generated meshes significantly improves and stabilizes as the value of the parameter kclip
increases. Finally, when the parameter kproj is taken into account, setting a small value of kproj during the projection stage 
may lead to the aggregation of sampling points, especially at corners or edges, resulting in the generation of meshes with 
poor quality.

5.3. Comparison

To further demonstrate the viability and effectiveness of our method, we compare against two exact CVT-oriented 
remeshing techniques, including the maximal Poisson-disk sampling (MPS) (Guo et al., 2015) and the RVD (Yan et al., 
2009), as well as two approximate CVT-oriented remeshing techniques, including the RPF (Xu et al., 2019) and the re-
stricted Voronoi cell (RVC) (Chen et al., 2018) in terms of the quality of generated triangular meshes. Moreover, in view of 
the computational performance per iteration, we compare against the RVD and RPF running on a CPU, the multi-threading 
RVC on a multi-core CPU, and the clipped Voronoi diagram (CVD) running on a GPU, respectively.

Notably, despite the fact that the RVD is generally utilized within the quasi-Newton method to speed up the CVT energy 
calculations, we are solely interested in the intersection between Voronoi cells and the original surface. Using the code 
provided in Lévy and Liu (2010), we reimplemented the RVD algorithm, and Lloyd’s method is applied to relocate these 
sampling points. Similarly, we reimplemented the CVD method for surface remeshing by replacing the Voronoi diagram 
computation in RVD (Yan et al., 2009) using the GPU-based construction method in Liu et al. (2022). Moreover, the RPF 
algorithm (Xu et al., 2019) in this comparison is reimplemented based on the normal estimation on PCL (Rusu and Cousins, 
2011), as we only focus on the computation of these approximate facets, that is RPFs.

Remeshing results & quality analysis. We compare the generated meshes with our method against a number of other 
methods, including MPS (Guo et al., 2015), RVD (Yan et al., 2009), RPF (Xu et al., 2019), RVC (Chen et al., 2018). Fig. 11
presents the results of several remeshing techniques, and Table 2 reports the pertinent mesh qualities. The implementation 
details for this comparative experiment are as follows: three different raw meshes are taken as inputs for these remeshing 
13



Y. Yao, J. Liu, W. Wu et al. Computer Aided Geometric Design 104 (2023) 102216
Fig. 11. Comparison results of different remeshing methods, where the colored triangles indicate the facets with lower quality (θmin < 33◦). From top to 
bottom: remeshing results of the Rocker, Botijo, and Kitten models. From left to right: input mesh, remeshing results of MPS (Guo et al., 2015), RVD (Yan 
et al., 2009), RPF (Xu et al., 2019), RVC (Chen et al., 2018), Ours with less number of vertices (Ours1) and Ours with more number of vertices (Ours2).

methods, i.e., Rocker, Botijo, and Kitten. We initialize some uniformly distributed auxiliary points inside the mesh model to 
assist the 3D Voronoi diagram construction in the RVD, which is further intersected with the original surface. We apply the 
original mesh surfaces to the RVC, using their vertices as the original sampling points, even though the RVC requires point 
clouds as inputs to reconstruct surfaces. Notably, the Botijo model with 10.7K vertices in Table 1 is selected as input for the 
RVC as that with 3.0K in Table 2 results in the surface calculated abnormally. Furthermore, we show two results with our 
method under a different number of vertices, and the detailed information is provided in Table 2.

The results in Fig. 11 and Table 2 demonstrate the effectiveness of our method for surface remeshing. Compared to MPS 
(Guo et al., 2015), our method generates meshes of higher quality, but the reported time of MPS is better than ours, as seen 
in Fig. 11. Instead of truncating boundary Voronoi cells in the RVD (Yan et al., 2009), the original surface is roughly fitted by 
calculating the tangent planes. Thus, our method significantly reduces the computational complexity and generates meshes 
with similar or better triangular quality with less time consumption. As illustrated in the first row in Fig. 11, the RVC 
yields significant approximation error as it pulls the sampling points back to the best-fitting planes to represent the surface, 
which is influenced by the number of input points. Unlike the RVC, the sampling points are projected onto the triangular 
facet in the original surface, producing meshes of higher quality, especially smaller Hausdorff distance errors. Nevertheless, 
influenced by the accuracy of the normal estimation, there are still a few triangles with small or obtuse angles in the 
remeshing results with our method, which leads to low-quality triangles (as shown in colored facets in Fig. 11).

Efficiency comparison. An essential highlight of our method and its main strength is computational performance. We 
perform an experiment to track the computation times of different methods with various numbers of sample points on 
Kitten and Botijo models. These methods could be typically classified into those running on a CPU, including RVD (Yan 
et al., 2009) and RPF (Xu et al., 2019), and those running on a multi-core CPU or GPU, including RVC (Chen et al., 2018), 
CVD (Liu et al., 2022) and our method. Despite the fact that several optimization techniques have been used to optimize 
the position per sampling point, we only pay attention to the computational performance of these methods in one itera-
tion. The corresponding record timings are shown in Fig. 12, where the number of sampling points is gradually increased 
from 10.0K to 30.0K. In view of the computation process of one iteration in these methods, the RVD calculates the exact 
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Table 2
Quality of the output results with different remeshing methods in Fig. 11, including the MPS (Guo et al., 2015), RVD (Yan et al., 
2009), RPF (Xu et al., 2019), and Ours, where the red values indicate the best results and the green values represent the second-best 
results.

Model Method #V 1 #F 2 Q min Q avg θmin θmin.avg θ<30o θ>90o dH
3 T (s)

Rocker

Input 9.4K 18.8K 0.004 0.695 0.240 36.456 0.272 0.350 – –
MPS 5.8K 11.6K 0.460 0.795 24.862 44.203 0.009 0.177 0.084 0.235
RVD 5.8K 11.6K 0.588 0.882 32.926 50.411 0.000 0.018 0.035 117.25
RPF 5.8K 11.6K 0.442 0.871 27.266 49.069 0.001 0.019 0.034 17.863
RVC 5.8K 11.6K 0.436 0.894 24.966 51.489 0.003 0.002 0.103 9.867
Ours1 5.8K 11.6K 0.578 0.884 29.019 51.753 0.000 0.002 0.057 5.680
Ours2 8.0K 16.0K 0.592 0.902 29.347 52.035 0.000 0.001 0.023 8.289

Botijo

Input 3.0K 6.0K 0.026 0.590 1.571 30.722 0.494 0.554 – –
MPS 5.0K 10.0K 0.415 0.797 25.103 44.255 0.008 0.170 0.091 0.219
RVD 5.0K 10.0K 0.568 0.884 30.405 50.650 0.000 0.018 0.055 188.791
RPF 5.0K 10.0K 0.489 0.872 26.659 49.295 0.003 0.020 0.083 29.624
RVC 5.0K 10.0K 0.448 0.826 25.447 46.255 0.003 0.009 0.102 11.371
Ours1 5.0K 10.0K 0.571 0.894 29.433 51.590 0.000 0.001 0.077 7.534
Ours2 10.0K 20.0K 0.599 0.913 32.391 52.528 0.000 0.000 0.058 15.724

Kitten

Input 12.5K 25.0K 0.008 0.663 5.123 35.823 0.327 0.467 – –
MPS 10.3K 20.6K 0.442 0.793 22.859 43.898 0.014 0.178 0.024 0.469
RVD 10.2K 20.4K 0.524 0.883 29.438 50.478 0.001 0.019 0.029 223.517
RPF 10.0K 20.0K 0.459 0.874 27.284 49.507 0.001 0.021 0.022 27.318
RVC 10.0K 20.0K 0.570 0.878 32.715 50.439 0.000 0.025 0.058 18.263
Ours1 10.0K 20.0K 0.572 0.908 31.147 52.139 0.000 0.001 0.007 13.334
Ours2 12.0K 24.0K 0.599 0.912 33.672 52.620 0.000 0.000 0.006 16.651

1 number of vertices; 2 number of facets; 3 Hausdorff distance (×10−2).

Fig. 12. Comparison of computational efficiency of various methods under different number of sampling points ranging from 10.0K to 30.0K. (a) computa-
tional efficiency of methods running on a CPU, including the RVD (Yan et al., 2009) and RPF (Xu et al., 2019); and (b) computational efficiency of methods 
running on a multi-core CPU or GPU, including the CVD (Liu et al., 2022) and RVC (Chen et al., 2018). Note that the computational efficiency of our method 
reported in (a) and (b) is the same.

intersection of boundary Voronoi cells and the original surface, which is complicated and time-consuming. Based on the in-
tersection calculation algorithm in RVD, the CVD achieves better computational efficiency with the usage of GPU-accelerated 
3D Voronoi diagram construction. Nevertheless, this does not circumvent the calculation of these exact intersections in RVD, 
which is still time-consuming. The RPF extracts the co-planar facets by traversing the constructed power diagram, achieving 
better computational efficiency compared to the RVD. The RVC calculates the CVT and pulls the sampling points back to a 
best-fitting plane and speedups by multi-threading. The RTF computation and the projection strategy in our method are im-
plemented in parallel by taking full advantage of GPU acceleration. Therefore, our method achieves the best computational 
efficiency compared to other methods.

More qualitative comparison. Furthermore, we compare our method with that proposed by Leung et al. (2015) from a 
qualitative perspective. The two methods share several features: CVT-driven, extrinsic, and GPU-friendly. However, there are 
also significant differences between the two methods, and Table 3 illustrates the qualitative comparison results of the two 
methods at the methodological level. To be specific, in terms of CVT dimension and RVD computation, Leung et al. (2015)
compute the 3D CVT and RVD, whereas our method computes the 2D CVT (the plane in 3D space) and RVD computation is 
unnecessary, which means that our method is more straightforward and more efficient. Considering the CVT computation 
and GPU acceleration, Leung et al. (2015) compute the exact EDT and CVT on GPU by discretizing the original surface 
15
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Table 3
Qualitative comparison to the method proposed by Leung et al. (Leung et al., 2015).

Method Input
CVT

RVD Efficiency
Dimension Computation Accuracy

Leung et al. (Leung et al., 2015) mesh/non-mesh 3D voxel-based poor necessary fast
Ours mesh 2D clipping-based good unnecessary faster

Fig. 13. Remeshing results of our method on a complex model David Head with 30.0K sampling points. (a) optimized RTF result; (b) the corresponding 
triangular mesh.

into voxels with a constant resolution, which is limited by the graphical memory and does not provide sufficient accuracy 
to guarantee the correctness of the CVT for complex models. In contrast, our method provides a more accurate 2D CVT 
by clipping the tangent in a resolution-independent manner to approximate the original surface. However, the method 
proposed by Leung et al. (2015) has advantages in remeshing various surface representations, including implicit, meshes, 
and point clouds.

5.4. More results

Complex models are commonly used in practical applications, e.g., modeling in computer games, physics simulations, 
etc. We conduct an experiment on a complex model, i.e., the David Head, to further evaluate the capability of our method. 
The number of sampling points is set to 30.0K in this experiment, and the remeshing results are presented in Fig. 13. To 
illustrate the RTF and corresponding triangular meshes in detail, we provide additional details in the remeshing results of 
the David Head, e.g., the left eye and the hair on top of the head. From the results in Fig. 13, it could be observed that 
our method is feasible for complex models, and we could obtain the desired triangular meshes on these relatively smooth 
regions. Nevertheless, regions with complex features are still challenging for our method, as the normal estimation through 
these sampling points cannot well-capture these complicated regions, e.g., the left eye of the David Head.

6. Conclusion

In this paper, we provide an effective GPU method for producing high-quality remeshing results. Based on the principle 
of the planar approximation, a parallel method is presented to compute the RTF of each sampling point directly, and each 
sampling point is further optimized to the barycenter of its RTF. Additionally, we present a KNN-based projection strategy 
to restrict the movement of sampling points on the original surface during the optimization process. Experimental results 
on a variety of mesh surfaces demonstrate the feasibility and efficiency of our method.

Limitations and future work. Despite the fact that our method offers various techniques for producing high-quality remesh-
ing results, there are still several difficulties in our work. The main limitation is that the proposed method does not have 
theoretical guarantees, although experimental results demonstrate its validity. Another limitation is the challenge of remesh-
ing complex geometries, especially with few sampling points. A small number of sampling points can hardly capture some 
details of a complex model, e.g., hands of Homer model, etc., which leads to incorrect RTF or even failure remeshing, as 
shown in Fig. 14(a). Besides, our method introduces the RTF, coupled with the CVT optimization, to yield regularly dis-
tributed sampling points, thus generating high-quality meshes. However, the surface curvature is not considered in our 
work, making it challenging to produce remeshing results with sharp feature preservation or surface curvature adaptation, 
as shown in Fig. 14(b). Finally, some special topological structures are commonly used in practical applications, e.g., thin-
plate or close-plate models. Due to these thin-plate or close-plate structures, the normal estimation of sampling points may 
be incorrect, resulting in an incorrect RTF result, as shown in Fig. 14(c).
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Fig. 14. Exemplifications of several limitations in our work. (a) failure in capturing details of the Homer model; (b) remeshing without sharp feature 
preservation of the Fandisk model; and (c) shortcomings in remeshing with close-plate of the Close Hemisphere model.

For future work, we are thinking of merging the proposed RTF with power diagrams for non-uniform remeshing. We 
believe that by giving each sampling point a weight parameter to regulate the area size of the relevant RTF, the surface 
curvature could be characterized. Additionally, verifying the normal orientation of each sampling point is another way to 
potentially solve defects in thin-plate or close-plate surface remeshing.
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