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Abstract
Voronoi treemaps are widely used for hierarchical data visualization. Existing methods calculate the visualization layouts of
hierarchical data by combining the proportion optimization ofweights and Lloyd’smethod of sites. However, thismay not only
produce results with large area errors but also requiremore time consumption. Besides, the relative visualization position of the
same data element between adjacent frames in dynamic hierarchical data may be changed abruptly, resulting in unclear visual
results. To this end, we propose an efficient and topological structure preserved visualization approach, called PowerHierarchy,
for visualizing hierarchical data. Firstly, an improved version of the power diagram computing algorithm is introduced to
generate the visualization layouts of each data element in the hierarchy. Unlike random initialization, we construct a centroidal
Voronoi tessellation as input and then use a Breadth-First traversing strategy to adapt the depth information to produce visual
layouts of static hierarchical data. Based on this, an updating scheme is presented for visualizing dynamic hierarchical data,
where previous results are iteratively fed as inputs to initialize current layouts. Besides, the external boundary sites and their
subsites are projected onto the visual boundary and then moved into the visual region with the relative position preserved.
Experimental results on several datasets demonstrate the efficiency, accuracy, and topology preservation advantage of our
proposed visualization approach.

Keywords Power diagram · Treemap · Hierarchical data · Visualization

1 Introduction

Hierarchical data have been frequently used in our daily
life and practical applications, e.g., digital document orga-
nization, class design in the software development process
[1], etc. Time-dependent hierarchical data, also known as
dynamic hierarchical data [2], have recently appeared in var-
ious fields, e.g., the real-time data monitoring system, etc.
In view of the characteristic of hierarchical data, the rest,
except dynamic hierarchical data, can be considered static.
To completely capture the underlying information in these
hierarchies, data visualization techniques are used to make
them more accessible and understandable.
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As an efficient visualization technique, Voronoi treemaps
combine the classical treemaps with the ordinary Voronoi
diagram orweightedVoronoi diagram (power diagram). This
method recursively subdivides the visual region into nested
polygonal subregions to produce visualization results, as
shown in Fig. 1. In view of visualizing static hierarchical
data, existing methods mainly involve (1) centroid optimiza-
tion and (2) weight optimization. The fundamental principle
of thesemethods [4] is to simultaneously increase or decrease
the weights proportionally to the missing or excess area and
optimize each site to its cell center by Lloyd’s method [3, 5].
However, the weights optimized in this manner may cause
tiny or even empty cells, resulting in a significant area error
of subregions in the generated visualization results, as shown
in the red and blue regions in Fig. 1. In addition, to the best
of our knowledge, Lloyd’s method is the simplest but not
the best way for centroid optimization, which requires much
more time consumption.

In terms of dynamic hierarchical data visualization via
Voronoi treemaps, several variants extend the static hier-
archical data visualization techniques. A dynamic Voronoi
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Fig. 1 In the results generated by the algorithm in [3], area errors in
target size are indicated by color (red = too big, white = correct, blue =
too small), where color denotes the degree to which the actual size of a
target area deviates from its expected size

treemap (DVT) [6] is proposed to maintain a desirable aspect
ratio for time-varying hierarchical data. However, it suffers
from the instability of a large variance jump in the region
position. Sud et al. [7] present a GPU-based approach for
visualizing dynamic hierarchical data, where the additively
weightedVoronoi diagram is calculated byGPU accelerating
during frames, and the previous layouts are utilized to ini-
tialize current Voronoi treemaps. However, similar to DVT,
the topology structures of visualization layouts produced by
this method cannot be preserved in each frame, as shown in
Fig. 13a–d. That is, the regions corresponding to the same
data element may “jump” between adjacent frames.

Therefore, we focus on the limitations of previous work
on computing Voronoi treemaps, and the topological struc-
ture preservation of layouts is taken into consideration.
Unlike existing methods, we propose an efficient visu-
alization approach called PowerHierarchy, for visualizing
hierarchical data. To achieve it, we first borrow the idea
of numerical optimization to calculate the layouts for static
hierarchical data visualization instead of using proportion
optimization and Lloyd’s method. Specifically, we designed
an improved version of the power diagram computing algo-
rithm from [8]. A centroidal Voronoi tessellation (CVT) is
calculated as input rather than random initialization to avoid
a variety of corner cases (e.g., empty cells, etc.) for better
computation stability. Based on this, an updating scheme is
presented for visualizing dynamic hierarchical data. Like [7],
the previous results (weights and sites) are fed as inputs to
initialize current Voronoi treemaps in our updating scheme.
However, the presence of these external boundary sites may
cause a large variance in the regional location, resulting in
the topological structures of layouts cannot be preserved.
Hence, we design a projection method, combined with the
initialization strategy, to preserve the topological structure of
layouts during in-between changes. Those external boundary
sites and their subsites are projected onto the visual bound-
ary and then moved into the corresponding visual region.
Experimental results on various static datasets demonstrate

the effectiveness, efficiency, and stability of our method.
Besides, the PowerHierarchy is also used to visualize the
2010–2019 global GDP and the 2019–2022 consumer price
index. These dynamic hierarchical data results validate the
topology preservation of visualization layouts between adja-
cent frames. We contribute the following:

• An improved version of the power diagram computing
algorithm from [8], generating visualization results for
static hierarchical data with better stability, efficiency,
and accuracy.

• An updating scheme to visualize dynamic hierarchi-
cal data with the topological structure of visualization
layouts is preserved, avoiding the possibility of the rela-
tive position of the same data element between adjacent
frames changing abruptly.

Even though numerical optimization is used for power
diagram computation and other applications, to the best of
our knowledge, PowerHierarchy is the first method to apply
it for visualizing hierarchical data. Using Newton’s and the
L-BFGSmethods to compute the visualization layouts signif-
icantly improves the computational efficiency and accuracy
of visualization results than state-of-the-art methods via
Voronoi treemaps. Additionally, the topological structure
preservation of layouts during frames is considered in Power-
Hierarchy, which allows it to generate smooth visualization
layouts without “jump”, which is superior to existing meth-
ods based on Voronoi treemaps.

The remainder of this paper is organized as follows. Sec-
tion2 briefly reviews related work. Section3 introduces the
preliminary power diagrams and Voronoi treemaps. Pow-
erHierarchy for hierarchical data visualization is explained
in Sect. 4. In Sect. 5, some experimental results on various
datasets are provided to evaluate the efficiency and accu-
racy of PowerHierarchy, and some conclusions are given in
Sect. 6.

2 Related work

In this section, we briefly review the hierarchical data visual-
ization with Voronoi treemaps, and then the prior approaches
to the computation of power diagrams are discussed. An
exhaustive review of data visualization methods could be
referred to [9, 10], and we focus on the visualization meth-
ods with Voronoi treemaps in the following.

2.1 Static hierarchical data visualization

Treemaps [9, 11] have been widely used to visualize hierar-
chical data, which apply the recursive space-filling approach
to subdivide the 2-dimensional plane into nested subregions.
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Each node in the hierarchy has a name and associated value.
Over the past three decades, studies have introduced various
techniques to produce visualization layouts, e.g., Slice and
Dice [12], Squarified treemaps [13], circular treemaps [14],
ordered treemaps [15, 16], and bubble treemaps [17], etc.
Voronoi treemaps, a powerful technique for hierarchical data
visualization with the polygonal visual region, have received
much attention from researchers.

Balzer and Deussen [4] introduce the basic iterative algo-
rithm for Voronoi treemaps. Lloyd’s method is utilized to
compute the centroidal Voronoi diagrams, coupled with the
weight adaption method to control cell areas. The weights
of sites are increased or decreased proportionally to the
missing or excess area. However, small or empty Voronoi
cells may appear this way, affecting the computation sta-
bility of Voronoi treemaps. Nocaj and Brandes [5] propose
a resolution-independent analytic method to compute the
power diagrams, which improves the weight optimization
scheme to reduce the number of iterations and achieve fast
computation. Nevertheless, thismethod limits theweight of a
new site to the minimum distance of the cell it belongs to and
its maximum weight, which may cause many Voronoi cells
to be small. Hahn et al. [3] introduce a weaker limit weight
optimization method, which limits the weight of a new site to
the minimum distance of the nearest neighbor site. Though
this method could circumvent too small Voronoi cells, some
cells still have large area errors, as shown in Fig. 1.

The essence of these methods to visualize static hierar-
chical data is the proportion optimization for weights and
Lloyd’s method for sites [3–5], as shown in Table 1. How-
ever, this may require more iteration and cannot generate
high-accuracy visualization results, as shown in Fig. 1. In
this paper, we first borrow the idea of numerical optimiza-
tion [8] and apply it to hierarchical data visualization. Unlike
previous work [3], we utilize Newton’s method for weight
optimization to produce a more accurate visual layout. The
L-BFGS method with super-linear convergence is used for
site optimization rather than Lloyd’s method with linear con-
vergence. Moreover, to improve the computation stability of
our method, we calculate a CVT before the weight and site
optimization, which is fed as input to produce the visual lay-
outs.

2.2 Dynamic hierarchical data visualization

Dynamic hierarchical data is also referred to as time-
dependent hierarchical data, where the structure and value
of data elements change over time. A straightforward visu-
alization way is to recalculate the layout as data changes, but
it is time-consuming. Several approaches [18, 19] have been
introduced to improve the stability and efficiency of visual-
izing dynamic hierarchical data [2]. Here we focus on these
methods using Voronoi treemaps.

For visualizingdynamichierarchical data basedonVoronoi
treemaps, Gotz et al. [6] present a DVT technique to main-
tain a desirable aspect ratio. They randomly initialize the
Voronoi treemap as data changes and then optimize the
weights and sites to produce visualization results. Never-
theless, there may be a large variance jump in the regional
position when rendering dynamic data, and the optimiza-
tion based on random initialization is time-consuming. Sud
et al. [7] developed a GPU-based technique for visualizing
dynamic hierarchical data via additively weighted Voronoi
diagrams. The previous layouts are taken as inputs to initial-
ize current Voronoi treemaps. This method achieves better
computational efficiency due to the parallel calculating of
the additively weighted Voronoi diagram and the initial-
ization with previous layouts. However, the topological
structures of visualization layouts of two adjacent temporal
data sequences generated by [7] are not guaranteed to pre-
serve, which causes the results to be unclear and confusing,
e.g., the “jump” in Fig. 13b–d.

This paper considers topological structure preservation,
andwe introduce anupdating scheme for visualizingdynamic
hierarchical data. Similar to [7], the currentVoronoi treemaps
are initialized with previous layouts. More importantly, these
external boundary sites and their subsites are projected onto
the visual boundary, then moved into the visual region with
relative position preserved.

2.3 Power diagram& its computation

As a significant extension of the Voronoi diagram, the power
diagram assigns a weight to each site to achieve the capacity-
constrained characteristic. Centroidal power diagram (CPD)
defines a particular power diagram where each site is located
at the mass center of its power cell, thereby producing a good
1:1 aspect ratio. Based on this, combined with the capacity
constraints, a centroidal capacity-constrained power diagram
(CCCPD) is obtained, which could be applied to hierarchical
data visualization.

Several methods have been introduced to calculate the
CCCPD.Balzer [20] presents a false-positionmethod to opti-
mize the weights, augmented by Lloyd’s method to optimize
the sites, producing the CCCPD. Owing to the one-by-one
iteration strategy, this method is inefficient. De Goes et al.
[21] utilizeNewton’smethod to optimizeweights, which sig-
nificantly improves the computational efficiency of CCCPD.
Furthermore, Xin et al. [8] apply the L-BFGS method with
super-linear convergence to optimize sites rather thanLloyd’s
method with linear convergence. Recently, Zheng et al. [22]
extended the capacity constraints to the general cases and
introduced the hybrid capacity-constrained centroidal power
diagram (HCCCPD). With the development of hardware,
existing methods take advantage of GPU to compute the
power diagram [7]. Zheng et al. [23] provide a GPU-CPU
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Table 1 Briefly review of
existing methods for
hierarchical data visualization
via Voronoi treemaps

Method Data Optimization Topology
Weight Site Initial Preserve

Balzer [4] Static Proportion Lloyd � �

Nocaj [5] Static Proportion Lloyd � �

Hahn [3] Static Proportion Lloyd � �

Sud [7] Dynamic Proportion Lloyd Previous �

Gotz [6] Dynamic Proportion Lloyd Random �

Ours Static & Dynamic Newton L-BFGS Previous �

hybrid algorithm to accelerate the construction of the power
diagram, thereby significantly improving the computational
efficiency.

In view of visualizing hierarchical data via power dia-
grams, existing methods extend the algorithm in [4] to
improve the stability of visual layout computation, as shown
in Table 1. However, thesemethods optimizeweights propor-
tionally and update sites by Llody’s method, which causes
more time consumption and large area error. Motivated by
numerical optimization in previous work, we introduce an
improved version of the power diagram computing algorithm
from [8] to calculate the visualization layouts.

Overall, to highlight the limitations of previous work
and emphasize the motivation of our work, Table 1 pro-
vides a brief review and comparison of existing methods
for hierarchical data visualization via Voronoi treemaps.
For visualizing static hierarchical data, previous work has
used proportional weight optimization coupled with Lloyd’s
method to generate visualization layouts, which may cause
small or even empty cells with large area errors, as shown
in Fig. 1. In view of dynamic hierarchical data, some tech-
niques have designed various initialization strategies to speed
up the visualization layout computation for each frame, but
the topology is not considered, resulting in the visualiza-
tion layouts being unclear and confusing. To address these
problems, we provide a visualization approach called Pow-
erHierarchy for hierarchical data visualization. On the one
hand, we propose an improved version of the power diagram
computation algorithm in [8], using Newton’s method for
weight optimization and the L-BFGS method for site opti-
mization to quickly generate accurate visualization layouts
of static hierarchical data. On the other hand, we introduce
an updating scheme for dynamic hierarchical data visualiza-
tion, where the previous results are taken as initialization of
current layouts, and these external boundary sites and their
subsites are moved into the current visual region with the
relative position preserved, producing visualization layouts
with topology preservation.

3 Preliminary

In this section, we discuss the definition of the power diagram
and its variants. The Voronoi treemaps are then explained in
detail.

3.1 Voronoi diagram & power diagram

The Voronoi diagram (also called “Voronoi tessellation”)
[24] defines a spatial subdivision of a given domain� ⊂ R2.
Given a set S = {si }ni=1 of n distinct points (also called
“sites”) in the plane. Based on the Euclidean distance, the
Voronoi diagram is a partition of the domain� into n regions
V = {V (si )}ni=1 without producing holes or overlaps. Each
region V (si ) of the site si , called Voronoi region, is defined
as:

V (si ) = {s ∈ �|‖s − si‖ ≤ ‖s − s j‖,∀ j �= i} (1)

As an extension of Voronoi diagrams, power diagrams [25]
introduce weights W = {wi }ni=1 to sites, that is, a parame-
ter wi is assigned to each site si . Each region P(si ) (called
“power cell”) is redefined as:

P(si ) = {s ∈ �|‖s − si‖2 − wi ≤ ‖s − s j‖2 − w j ,∀ j �= i}
(2)

where d(s, si ) = ‖s−si‖2−wi is redefined as the power dis-
tance. The power diagram degenerates to a Voronoi diagram
when the weights of all sites are equal [25].

3.2 CCCPD

The area of a power cell depends on the relative position
of the site and its neighbors. Power diagrams introduce a
weight to each site, having precise capacity constraints. By
imposing the centroid and capacity constraints on each site,
we can obtain a CCCPD. That is, each site si is located at the
mass center of its power cell P(si ), and the capacity (e.g.,
area, etc.) mi is equal to the target value ci :
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Fig. 2 Exemplification of a Voronoi treemap in the squared visualiza-
tion domain, where O = {o1, o2, · · · , o13} represents the set of data
nodes, and the polygonal regions are the corresponding visualization
layouts

⎧
⎪⎪⎨

⎪⎪⎩

si = s∗
i =

∫

p(si )
sρ(s)ds

∫

P(si )
ρ(s)ds

mi = ∫

P(si )
ρ(s)ds = ci∑n

i=1 mi = ∫

�
ρ(s)ds

(3)

where ρ(s) represents the density and s∗
i denotes the centroid

of the power cell P(si ). Aurenhammer et al. [26] introduce
the formulation F(S,W ) of the optimal power diagram, and
the gradient of F(S,W ) can be shown as [21]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(S,W )=∑n
i=1

∫

P(si )
‖s − si‖2ds−∑n

i=1 wi (mi −ci )
∇wi F(S,W ) = ci − mi

∇wi m j = − 1
2 · |e∗

i j |
|ei j |

∇si F(S,W ) = 2mi (si − s∗
i )

(4)

where ei j represents the regular edge between two adjacent
sites si and s j , and e∗

i j refers to the dual edge separating
the power cell P(si ) and P(s j ). Notably, the CVT could be
computed based on Eq. (4) by setting all weights of sites
equal [27].

3.3 Voronoi treemap

A Voronoi treemap [4] is the recursive subdivisions of a
region into the cells of a centroidal Voronoi diagram (CPD is
considered in this paper), and that is defined in the following.
Let O = {o1, o2, ..., on} denote a set of objects, associated
with positive values vi ∈ R > 0, i = 1, 2, ..., n. Based on
the description in [5], the additive extension to subsets of
Q ⊆ O is defined: V (Q) = ∑

i :o∈Q vi .

The hierarchical partition of O is a rooted tree T =
(Q, E; r), where nodes Q represents the subset of O , and
edges E explains the set inclusion. The root r ∈ Q repre-
sents O , and the leaf nodes are the singleton sets {oi }ni=1.
Each inner node expresses the set formed by the union of its
children sets.

The hierarchical partition is represented by the Voronoi
treemap. The bounded region VQ , represented the entire
objects, is subdividedby a set of centroidalVoronoi diagrams,
in which these Voronoi cells are recursively subdivided such
that the leaf nodes are denoted by these cells with an area
proportional to their value. The children of each q ∈ Q are
represented by child(q), and the target area of c ∈ child(q)

is A(Vq) · v(c)
v(q)

, where A(Vq) is the area of the region Vq , v(c)
and v(q) are the value of data node.

4 PowerHierarchy for hierarchical data
visualization

The majority of PowerHierarchy is static hierarchical data
visualization (Sect. 4.2) and dynamic hierarchical data visu-
alization (Sect. 4.3). Before that, the problem of visualizing
hierarchical data is discussed (Sect. 4.1).

4.1 Problem statement

Voronoi treemaps recursively divide the primal region into
nested subregions, as indicated inSect. 3.3.WeightedVoronoi
diagrams address the aspect ratio and area requirement
instead of using the ordinary Voronoi diagram. Two gen-
eralizations, the additively weighted Voronoi diagram and
the power diagram, could be formed by imposing the weight
characteristic on the ordinary Voronoi diagram. The bisec-
tor shape of two neighboring power cells is a hyperbolic
curve in the former,whichmay cause difficulty in theVoronoi
diagram construction. In contrast, power diagrams produce
straight lines that resemble the ordinary Voronoi diagram.
Therefore, we concentrate on visualizing hierarchical data
using the power diagram in this paper.

Hierarchical data could be classified into two types based
on their characteristic: static hierarchical data and dynamic
hierarchical data. The structure and values of data elements
change in the latter, in contrast to the former, where they
do not. However, regardless of whether the hierarchical data
is static or dynamic, the fundamental components of data
visualization are the following:

(1) Area constraint Power diagrams are used in hierarchical
data visualization to convey data information, with the
area size of each power cell corresponding to the value of
the relative data element. That is, the desired size Atarget

i
of a data node in the hierarchy is the same as the area size
Acurrent
i of its power cell P(si ): Acurrent

i = Atarget
i .

(2) Centroid constraint Previous work use the CVT to recur-
sively divide the primal region into nested subregions
to address the high aspect ratio of treemaps, which can
enhance the readability of visual results. Therefore, the
centroid constraint is imposed on the layout computation.
That is, the CPD (see Sect. 3.2) is adopted in our work.
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4.2 Visualization of static hierarchical data

Then, an improved version of the power diagram computing
algorithm from [8] is introduced in detail to visualize static
hierarchical data.

4.2.1 Static hierarchical data

Static hierarchical data is frequently utilized in our daily
life, i.e., the organization of a company. The essence feature
of this data is that the structure and value of data elements
never change. Static hierarchical data visualization based on
Voronoi treemaps mainly focuses on calculating the visual
layout of each data node in the visualization region, satisfy-
ing the area and centroid constraints.

Existing methods [3–5] increase or decrease the weights
proportionally to the missing or excess area and optimize
each site to its cell center by Lloyd’s method. However,
these methods may cause large area errors in visualization
layouts (as shown in Fig. 1), and more time consumption
is also required. To this end, we introduce a visualization
approach called PowerHierarchy, which recursively com-
putes the power diagram of each data node in the hierarchy,
and power cells are denoted as the visualization layouts.

4.2.2 Visualization layout computation

In this paper, we borrow the idea of numerical optimiza-
tion and apply it to hierarchical data visualization layout
computation in the PowerHierarchy. To achieve it, we intro-
duce an improved version of the power diagram computing
algorithm from [8], which generates the layout of static hier-
archical data progressively based on Eq. (4). Specifically,
a CVT rather than random initialization is taken as input.
Then the following two steps are iteratively performed: (1)
optimizing the weights to comply with the area constraint
by Newton’s method, and (2) optimizing the sites to satisfy
the centroid constraint by the L-BFGS method. Based on
this, the Breadth-First traversing strategy adapts the depth
information, thereby producing the visualization layout of
static heirarchical data. The pseudo-code of visualization
layout computation is given in Algorithm 1, and the rel-
evant computation process is presented in Fig. 3. Notably,
the power diagram computing algorithm is experimentally
proved super-linear convergence, and more detailed imple-
mentations could be found in [8].

(1) Weight optimization The area size of each power cell is
strongly related to theweights of its neighbors. Therefore,
to adhere to the area constraint in Sect. 4.1, the first step
is optimizing the weight of each site, that is, Acurrent

i =
Atarget
i . Similar to [21], Newton’s method is applied for

weight optimization, and the Hessian matrix of F(S,W )

could be calculated based on Eq. (4), where mi is the

Algorithm 1Visualization layout computation of static hier-
archical data
Require: visual boundary�, hierarchical data r , termination condition

ε

Ensure: visual layouts (Power diagram (S,W ))
1: q ← r //data node queue
2: while !q.empty() do
3: node ← q. f ront(); q.pop()
4: nnode ← child(node).si ze()
5: for i = 1, 2, · · · , nnode do // area constraints
6: ci ← v(child(node)[i])

v(node) · A(Vnode)
7: end for
8: Snode to be nnode randomly generated sites
9: Compute CVT layout based on Eq. (4)
10: while δ > ε do // layout computation of a data node
11: Update weights W by Newton’s method
12: Compute gradients ∇si F(Snode,Wnode) in Eq. (4)
13: Estimate the step-size for Snode by a line-search
14: Update Snode and construct power diagram
15: Compute Acurrent

i and Atarget
i

16: δ ← max{|Acurrent
i − Atarget

i |}
17: end while
18: q ← child(node)[i], for i = 1, · · · , n
19: end while

current area Acurrent
i and ci is the target area Atarget

i of
power cell P(si ).

(2) Position optimization Due to the separation of optimiza-
tion of the weights and sites, Nocaj and Brandes [5] point
out that the L-BFGS method may be applied to com-
pute the visualization layout. Still, its influence on the
power diagram and the area requirements is not guaran-
teed. Xin et al. [8] experimentally prove the super-linear
convergence of the L-BFGS method for computing the
centroidal power diagram, which is empirically faster
than Lloyd’s method with linear convergence. Therefore,
we utilize the L-BFGS method for optimizing the posi-
tion of each site to satisfy the centroid constraint, and the
gradient of F(S,W ) with respect to the site si is given in
Eq. (4).

(3) Improvement The primary power diagram computing
algorithm in [8] employs random initialization, which
suffers from various corner cases, e.g., empty cases. To
circumvent these corner cases, we construct a CVT based
on random initialization as input to improve the stabil-
ity of the layout computation of static hierarchical data.
Notably, there is no need for additional code for the CVT,
and all that is required is to set the weights of all sites to
be equal. Our work sets the termination condition for the
CVT calculation to 10−3. Therefore, the CVT could be
generated using the L-BFGS method based on Eq. (4).
Although the CVT computation consumes more time,
we observe that timing only takes up less than 10% of
the total computation time for the visualization layouts.
Moreover, these corner cases, e.g., small or empty cells,
could be avoided, improving computational stability.
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Fig. 3 Visualization layout
computation of static
hierarchical data, where a CVT
is calculated as input rather than
a randomly initialized power
diagram
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Although numerical optimization has been used in various
applications, to the best of our knowledge, it is the first time
to be applied for visualizing hierarchical data. Compared
to previous work [3–5], PowerHierarchy could generate
visualization layouts with smaller area errors in less time.
Therefore, the proposed algorithm could be easily extended
to visualize dynamic hierarchical data.

4.3 Visualization of dynamic hierarchical data

Consideringdynamichierarchical data basedonAlgorithm1,
PowerHierarchy provides an updating scheme to compute the
visualization layout with the topology structure preserved.

4.3.1 Dynamic hierarchical data

Dynamic hierarchical data is commonly used in daily life,
e.g., the annual visualization of global GDP, etc. A common
feature in these data is that the structures and values of data
elements change over time. Therefore, the visualization of
dynamic hierarchical data is an increasingly essential field
of data visualization.

The data tree structure and the values of data nodes are
two aspects that play a significant role in dynamic hierarchi-
cal data. To be more specific, dynamic hierarchical data can
be classified into three categories depending on these two
characteristics, which are illustrated below with the organi-
zation of computer documents as an example.

• Case 1The value of a data node changes, but the structure
of the data tree remains unchanged, e.g., modifying some
digital documents.

• Case 2 The structure of the data tree changes, but the
values of data nodes stay constant, e.g., shifting digital
documents to different directories.

• Case 3 The values of data nodes and the structure of the
data tree alter, e.g., modifying some digital documents
and then moving them to other directories.

The goal of dynamic hierarchical data visualization is
to calculate the visual layout of each data node during in-
between changes. A straightforward way is to recalculate
the visual layout of hierarchical data in each frame, which
is simple but requires more time consumption. Therefore,
previous work [6, 7] introduces several techniques for visu-
alizing dynamic hierarchical data, such as initialization with
previous layouts, GPU acceleration, etc. However, topologi-
cal structures of visualization layout of two adjacent temporal
data sequences are not guaranteed to preserve, resulting in
unclear and confusion, such as position "jump" of the same
data node in an adjacent frame. Therefore, swiftly producing
the visual layouts for each frame while preserving the topol-
ogy is the primary objective of dynamic hierarchical data
visualization in our work. In light of this, PowerHierarchy
offers an updating scheme to visualize dynamic hierarchical
data, using Algorithm 1 as the foundation for computing the
visualization layouts.

4.3.2 Updating scheme

Regarding the structure and value of hierarchical data, as
explained in Sect. 4.3.1, three different circumstances are
considered when visualizing dynamic hierarchical data. In
this paper, we propose an updating scheme in PowerHier-
archy to visualize dynamic hierarchical data, where the
topological structures of visual layouts are preserved dur-
ing in-between changes. Figure4 illustrates the computation
process of dynamic hierarchical data with topology preser-
vation.

Specifically, the initialization strategy using previous lay-
outs is utilized in our method, which is similar to that of [7].
These sites and associated weights are used to initialize cur-
rent Voronoi treemaps, followed by weight optimization and
position optimization to satisfy the area centroid and capacity
constraints. However, as hierarchical data changes make the
visual layout of the same data element vary between frames,
some sites may lie outside their parent’s visual region,
resulting in the position of the same data element chang-
ing abruptly. To this end, we propose a projection strategy
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Fig. 4 An illustration of
dynamic hierarchical data
visualization, where the
topological structure of visual
layout is taken into account. 1©
Initialization & external sites
projection; 2© visual layouts
computing by Algorithm 1
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to move these external sites to the interior of their visual-
ization region. Subsequently, the subsites of these external
sites are moved to the interior of the optimized visualization
region with a relative position preserved. An explanation of
the updating scheme is given as follows.
(1) Update, insert and delete Based on the categories of
dynamic hierarchical data in Sect. 4.3.1 modifying sites (or
regions) in the visual layouts can also be classified into three
types: update, insert and delete. More specifically, updating
the relative region in visual layouts corresponds to changing
the size of a digital document in Case 1. In Cases 2 and 3,
transferring a digital document to another directory refers
to deleting the relevant region from the primal layout and
inserting it into the new layout.

Firstly, as the values of the data nodes in the hierarchy
change, the visualization layout should be updated to reflect
the data information in the hierarchy, as shown on the left
in Fig. 4. As only the values of the hierarchical data change,
the current Voronoi treemap can be initialized using the pre-
vious layout (sites and weights) and further optimized using
Algorithm1 to satisfy the area constraint. Secondly, when the
data tree structure in the hierarchy changes, the relative area
is removed from the previous layout, which is considered
to be inserted into the new layout, and the relative position
is preserved, as shown on the right in Fig. 4. Similarly, the
Voronoi treemap is optimized by Algorithm 1 to meet the
area constraint.

A particular scenario exists when the data tree structure is
changed. That is, the dynamic hierarchical data involves new
data node insertions. These newly inserted data nodes have
no relative position or weight information in the previous
visualization layouts. Therefore, randomly initialized sites
representing these newly inserted data nodes are inserted into
the corresponding visualization region with their weights set
to the minimum of their neighbors. This initialization strat-
egy, circumventing the possibility of small or empty cells,
improves the stability of power diagram construction.
(2) External site projection and topology preservation The
above initialization strategy utilizes the previous visual
results as inputs to initialize the current visual layouts. The

Fig. 5 Exemplification of the external site projection, where the exter-
nal site si is projected onto the visual boundary and then moved into
the visualization region

Breadth-First traversing strategy in Algorithm 1 generates
the visualization layout of each data node. However, due to
changes in hierarchical data in adjacent frames, the visualiza-
tion layout of the same data element may differ, resulting in
some sites (called “external sites”) outside the current visual
region.

For these external sites, additional processing is vital to
preserving the topology of visual layouts during in-between
changes. To be more specific, two-stage processing is carried
out sequentially: (1) projecting them onto the visual bound-
ary, and then (2) moving them inside the visual region. As
shown in Fig. 5, let si represent an external site, and blue lines
denote the visual boundary. We first project the external site
si onto the visual boundary, and the projected point is marked
as sclose. That is, sclose is the nearest point to si from inside its
visual region (despite being located on the boundary). Then,
the internal site snewi , as the site of si inside the visual region,
could be calculated as: snewi = sclose + λ(sclose − si ), where
the parameter λ is the offset of the projected point. To cir-
cumvent “jump” in the position of the same data element in
the visualization layout between adjacent frames, the param-
eter λ is set to 0.01 so that the internal site snewi is as close
as possible to the external site si . Following the two-stage
processing, visualization layouts are generated by applying
the optimization approach in Algorithm 1 to satisfy the area
and centroid constraints.
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site

(outside)

subsites

region

projection & movement initialization visual region

Fig. 6 Exemplification of the topology preservation of layouts with an
external site and its subsites. Top row: the projection of an external site
to its visualization region (red squared region); and bottom row: the
movement of these subsites with their relative position preserved (top

left region). From left to right: projection and movement exemplifica-
tion; initialization with the previous weights and the positions of the
moved sites; optimized visualization layouts

As shown in the top row of Fig. 6, sites outside the
visualization region are first moved to the inside of their rel-
evant region (red squared region). Thus, the current Voronoi
treemap is initialized by combining the positions andweights
of other sites. Based on this, combining the weight opti-
mization and position optimization, the visualization layout
is optimized to satisfy the area and centroid constraints, as
shown in the last figure in the top row of Fig. 6 (assuming the
same area constraint for all sites here).

In contrast to the projection strategy described above, the
movement of the subsites of these external sites relies on the
visual layout calculation. Owing to the Breadth-First travers-
ing strategy in Sect. 4.2, the visual layout of their parent site is
determined when computing the visual layouts of these sub-
sites. These subsites are scaled and moved directly into the
calculated visual region while retaining their relative posi-
tions, as shown in the first figure in the bottom row of Fig. 6.
Then, the positions and weights are used as initialization
(middle figure in the bottom row of Fig. 6), combined with
weight optimization and position optimization to produce the
visual layout, as shown in the last figure in the bottom row
of Fig. 6.

Therefore, the external site projection and topology
preservation could be summarized as (1) these external sites
are projected onto the visual boundary and then moved into
the relevant visual region (top in Fig. 6), and (2) their subsites
are scaled and moved into the optimized visual region with
their relative position in previous layout preserved (bottom in
Fig. 6). Consequently, our method could effectively preserve
the visualization layouts during each frame for visualizing
dynamic hierarchical data.

5 Performance evaluation

We implement and experiment with PowerHierarchy on a
computer with a 64-bit version of Win10 system, a 3.6 GHz
Intel (R)Core (TM) i7–9700KCPU, and 16GBmemory. The
coding language is C++, and the platform isMicrosoft Visual
C++ 2012. It should be mentioned that the compared meth-
ods are reimplemented in C++, and the power diagrams are
constructed byComputationalGeometryAlgorithmsLibrary
(CGAL−4.7).

5.1 Datasets

We perform the test on a variety of datasets, including the
Dataset of China Plant (DCP), the Flare class hierarchy
dataset (Flare) [28], the KEGG orthology dataset (KEGG)
[29], the global GDP dataset (GDP) [28], and the Consumer
Price Index Dataset (CPI), to confirm the effectiveness of
PowerHierarchy.

(1) DCP The DCP is a scientific dataset of plant species
in China established by the Institute of Botany, Chi-
nese Academy of Sciences. With over 30 000 species in
roughly 300 families, the dataset primarily provides basic
information concerning the systematic categorization of
plant species. In the experiment, we select a portion of
the species data consisting of five layers with 157 nodes,
where the value of each data node indicates the number
of species under the corresponding family category.

(2) Flare The Flare project [28] is an ActionScript frame-
work for developing visualizations that run in the Adobe
Flash Player, which has a hierarchical software structure
consisting of four layers with 220 nodes. In this dataset,
the value of each data node represents the size of the
corresponding source file in the Flare project.
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Fig. 7 Visualization illustration
of five revisions of a
hierarchical data from DCP,
where the area size reflects the
value of its relative data node

(a) (b) (c)

(d) (e) (f)

level 1 level 2 level 3

level 4 level 5

(3) KEGGTheKEGG[29] is a dataset ofmolecular activities
expressed as function orthologs, composed of four layers
and 17600 nodes. In our tests, the top four KEGG Path-
way map categories are chosen, where the value of each
data node shows the number of subordinate categories.

(4) GDPTheGDPdataset [28] separates the globalGDP into
seven categories: Asia, North America, South America,
Europe,Australia,Africa, and theRest of theWorld.Note
that the GDP dataset consists of two layers with 42 nodes
since these countries or regions with a GDP of less than
300 billion are included in the last category. Addition-
ally, our tests use the global GDP from 2010 to 2019 as
dynamic hierarchical data.

(5) CPI TheCPIdataset is a dynamichierarchical dataset that
counts all Chinese provinces in the first quarter of 2019 to
2022. We collect detailed data from the National Bureau
of Statistics of China. All areas in China are classified
into six modules based on the geographical location of
the province: North China, Northeast China, East China,
South Central China, Southwest China, and Northwest
China. The value of each data node indicates the per
capita consumer expenditure of residents in the corre-
sponding province.

5.2 Evaluation for static hierarchical data

5.2.1 Visualization results

To demonstrate the feasibility of our approach, several tests
are performed on these datasets provided in Sect. 5.1. Our
method’s fundamental principle is recursively computing
each data node’s visual layout. Thus, we first compute the
visualization results of hierarchical data in the DCP dataset
on a circular region to illustrate the computational flow of
our method. The generated visualization layouts of five lay-
ers are presented in Fig. 7, and the original visual region is
shown in Fig. 7a. Furthermore, to verify the robustness and
effectiveness of our method, we conduct more experiments
on DCP, Flare, and KEGG datasets to visualize more com-
plex hierarchical data. The primal visual regions are set to the
shapes of a flower, an elliptical, and a squared region. Figure8

presents the corresponding visualization results. The results
in Fig. 7 demonstrate the feasibility of our method, and those
in Fig. 8 further indicate the effectiveness and robustness of
visualizing more complex hierarchies, even with the flower
visual boundary.

5.2.2 Comparison

To evaluate the superiority of our method, we compare the
proposed method with three hierarchical data visualization
methods, including the Slice&Dice treemap [12], the Squar-
ified treemap [13], and the Voronoi treemap [3]. Due to the
restrictive nature of the primal visualization region in the
Slice & Dice treemap [12] and the Squarified treemap [13],
we set a square visualization region as the input visual region.
Figure9 presents the visualization results of various meth-
ods in three datasets. Figure10 demonstrates the associated
violin plots of the aspect ratio of produced visualization
layouts. The aspect ratio of a power cell is calculated as
ratio(P(si )) = min{w/h, h/w}, wherew and h are thewidth
and height of the power cell P(si ). Notably, a power cell that
has an aspect ratio close to 1 implies greater visibility.

According to the results in Figs. 9 and 10, we can observe
that the Slice & Dice treemap [12] typically generates cells
with a high aspect ratio, leading to the results being unclear
and difficult to understand. To circumvent these high aspect
ratio cells, the Squarified treemap [13] utilizes the greedy
algorithm to produce the visualization layouts of hierarchi-
cal data. Nevertheless, despite the attractive aspect ratio of
the visualization results, it is a challenge to determine the
relationships between the data nodes in the hierarchy. In
view of visualizing hierarchical data usingVoronoi treemaps,
the results produced by PowerHierarchy perform better than
those in [3]. In particular, PowerHierarchy yields more reg-
ular cells with a better aspect ratio, as shown in the red
wireframes of Fig. 9.

5.2.3 Computational efficiency

Computational efficiency is a vital indicator of a visual-
ization approach. A good visualization approach should be
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Fig. 8 Visualization results of hierarchical data by PowerHierarchy in
three datasets, where each cell area corresponds to the value of data
element in the hierarchies. From left to right: visualization result in the
Dataset of China Plant (DCP, five layers with 157 nodes), the Flare
class dataset (Flare, four layers with 220 nodes), and the KEGG dataset

(KEGG, four layers with 17600 nodes). Taking the Flare class dataset
as an example, the hierarchical relationship of data elements is shown
as: vis (first layer), opera (second layer), layout (third layer), and stack
(fourth layer)

Fig. 9 Computational results of
four different visualization
methods on GDP, Flare, and
DCP datasets, where the same
color regions corresponds to the
same data nodes in the
hierarchies. From left to right:
results obtained by Slice & Dice
treemap [12], squarified treemap
[13], Voronoi treemap [3] and
PowerHierarchy
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(a)Slice&Dice [12] (b) Squarified [13] (c)Hahnet al. [3] (d)Ours

DCP(c)Flare(b)GDP(a)

Fig. 10 The violin plots of the aspect ratio of the layouts obtained using various methods, corresponding to these results in Fig.9

able to compute the visualization layouts of hierarchical data
relatively quickly, and the area error of the generated visu-
alization results should be as small as possible. Treemap
recursively computes the layouts of data elements for each
layer in the hierarchy. Thus, the timing of the layout com-
putation for single-layer data elements is closely related to
the computational efficiency of the visualization approach.
To compare the performance of PowerHierarchy with other
methods, we design an experiment with the various sites and
count the corresponding computational time of the visual-
ization layouts. Besides, we also calculate the area error

of the visualization layouts of different methods with the
same iteration, where the area error ε could be calculated by
max{|Acurrent

i − Atarget
i |}. Table 2 presents the computational

time and the area error of different methods. Notably, to keep
things consistent, the area accuracy is the same when com-
paring computational efficiency of different methods (Table
2).

The results in Table 2 show that the Slice & Dice treemap
[12] and Squarified treemap [13] achieve better computa-
tional performance. They directly compute the rectangular
visualization layout corresponding to eachdata elementwith-
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Table 2 Computational time
and area accuracy comparison
of PowerHierarchy and other
methods

Nodes (n) Methods Timing (s) Area error of same iterations
#Iter = 20 #Iter = 30 #Iter = 40

10 Slice & Dice [12] 0.083 0.000 0.000 0.000

Squarified [13] 0.132 0.000 0.000 0.000

Hahn et al. [3] 0.957 8.941E-2 5.472E-3 6.459E-4

Ours 0.393 6.861E-5 3.186E-7 6.521E-9

50 Slice & Dice [12] 0.382 0.000 0.000 0.000

Squarified [13] 0.517 0.000 0.000 0.000

Hahn et al. [3] 6.485 8.149E-2 6.617E-3 2.752E-4

Ours 3.316 5.793E-4 7.836E-6 8.711E-9

out iterative optimization. Thus, these two methods produce
visualization layouts with an area error of 0. However, it is
well-known that the primal visual region of these two meth-
ods can only be rectangular, and the generated visual layouts
have an unsatisfied aspect ratio of the Slice&Dice. In view of
the visualization approach via Voronoi treemaps, the method
provided by Hahn et al. [3] optimizes the weights propor-
tionally while optimizing the sites using Lloyd’s method to
generate visualization results. This method, however, takes a
lot longer. Unlike [3], using numerical optimization, Pow-
erHierarchy combines the L-BFGS method for sites with
Newton’s forweights to yield the visualization layouts.Addi-
tionally, our method computes a CVT as input to prevent
some corner situations (e.g., empty cells, etc.), improving
the computational efficiency while enhancing the stability
of power diagram construction. The results in Fig. 2 provide
evidence that PowerHierarchy could achieve more accurate
visualization layouts with less time consumption. Thus, it
is possible to apply PowerHierarchy for visualizing time-
dependent hierarchical data.

5.3 Evaluation for dynamic hierarchical data

5.3.1 Visualization results

To demonstrate our method’s effectiveness and topology
preservation, we perform our method in the 2010–2019
global GDP dataset. The 2010–2019 global GDP dataset
includes statistics on the GDP of each nation and area from
2010 to 2019. All countries and regions are classified into
seven groups based on their geographic location and GDP
values: Asia, North America, Europe, South America, Aus-
tralia, Africa, and the Rest of the World. The GDP value of
every nation and region is tallied online, and those with too
low GDP (less than $300 billion) are included in the Rest of
the Word section.

Figure11 provides the visualization results of the yearly
global GDP, using the original GDP data as the sole input in
our system. Additionally, Fig. 12 presents our visualization

system, andmore dynamic results are provided in the supple-
mentary video, e.g., the addition, deletion, and modification
of data nodes, etc. These experimental results demonstrate
the effectiveness and feasibility of our method. Thanks to the
animated visualization results, these economists could more
easily track changes in the global GDP. Taking the GDP of
Asia as an example, the region with the label “CN” stands
for the GDP of China, while the region with the label “JP”
denotes the GDP of Japan. The results in Fig. 11 demonstrate
that China’s GDP is steadily growing in relation to Japan’s
GDP, indicating that China’s economy is of significance in
Asia.

5.3.2 Comparison & computational efficiency

In view of visualizing dynamic hierarchical data, we com-
pare PowerHierarchy with the one put forward by Sud et
al. [7] on a three-level DCP dataset. Three situations are
considered: (1) raising the values of data nodes; (2) chang-
ing the structure of the data tree; and (3) altering both (1)
and (2). Specifically, the first situation involves raising the
value of a node named “Ostrya Scop.”, and the second sit-
uation corresponds to switching the structure of a subtree
named “CAES. TAUB.” from a node “LEGUMINOSAE” to
“BETAULACEAE”. Notably, the method presented by Sud
et al. [7] employs the additively weightedVoronoi diagram to
compute the visualization layouts. To maintain experimental
consistency, themethod in [7] is reimplemented in C++ using
a CPU, and power diagrams are utilized as the foundation for
visualization layout computation. The results of visualizing
dynamic hierarchical data are shown in Fig. 13, where the
green star indicates the nested regions of the node with value
change, and the regions with red borderlines designate the
node with structural change in the hierarchy. Table3 reports
the computational time of these results.

Furthermore, to validate the superiority of our method,
we conduct an additional comparative experiment with the
method proposed by Sud et al. [7] on another dynamically
hierarchical dataset, namely the CPI dataset. The CPI dataset
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(a) 2010 (b) 2011 (c) 2012 (d) 2013 (e) 2014

(f) 2015 (g) 2016 (h) 2017 (i) 2018 (j) 2019

0.786s 0.864s 0.915s 1.058s 1.135s

0.937s 0.893s 0.929s 0.871s

Asia North America Europe South America Australia Africa Rest of the World

Fig. 11 Visualization layouts and the computational timings (in sec-
onds) of the global GDP from 2010 to 2019, where the color regions
represent different continental plates in the world (colored by the Tree-

Color [30]). The subregion labeled “CN” corresponds to the GDP of
China, “JP” represents the GDP of Japan, and “DZ” denotes the GDP
of Algeria

Fig. 12 A screen capture of our
system showing the layouts of
our proposed visualization
approach in use to view the
global GDP from 2010 to 2019

Fig. 13 Experimental results of
visualizing dynamic hierarchical
data by PowerHierarchy and the
method in [7]. Top row: results
generated by the method in [7],
and bottom row: results
generated by PowerHierarchy.
The previous visualization result
is shown in a; b and e are results
of situation (1); c and f
represent results of situation (2);
and d and f denote results of
situation (3) (a) origin layout

(b)
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Fig. 14 Visualization layouts of different methods on the 2019–2022 CPI dataset from China, where the color regions show the detailed information
of the relevant province

Table 3 Computational time of the visualization layouts generated by
the method in [7] and PowerHierarchy (corresponding to these results
in Fig. 13)

Methods Layouts #Iter Time (s)

Sud et al. [7] Fig. 13b 59 1.079

Ours Fig. 13e 53 0.958

Sud et al. [7] Fig. 13c 91 1.519

Ours Fig. 13f 64 1.154

Sud et al. [7] Fig. 13d 98 1.637

Ours Fig. 13g 71 1.247

consists of an essential macroeconomic indicator reflecting
the changes in the price level of consumer goods and services
related to people’s life. We collect this detailed information
from the National Bureau of Statistics of China, specifically
for each province in the first quarter of each year from 2019
to 2022. These provinces are divided into six parts based
on their regional location, as shown in Sect. 5.1. Figure14
presents the visualization results of different methods on the
CPI dataset.

From the results in Fig. 13 and Fig. 14, we can observe
that our proposed method can effectively compute the visu-
alization layouts of dynamic hierarchical data. The previous
visualization layouts are fed as inputs to initialize the current
visualization layouts in the method proposed by Sud et al.
[7]. For simple dynamic hierarchical data (e.g., Fig. 13b), the
topology structures of visualization layouts can be preserved,
but it cannot be guaranteed for those complex dynamic
hierarchical data (e.g., Fig. 13c, d), which may cause the
visualization results unclear and confusing. However, the
updating scheme projects those sites outside the visual-
ization region and their subsites into the corresponding

region (described in Sect. 4.3.2). Consequently, the topol-
ogy of visualization layouts of two adjacent temporal data
sequences generated by PowerHierarchy can be guaran-
teed to preserve, as shown in Fig. 13e–g. Furthermore, the
computational time reported in Table3 indicates that the
computational efficiency of our proposed updating scheme is
similar to themethod in [7] when visualizing simple dynamic
hierarchical data (e.g., only value changes), but it has bet-
ter performance in visualizing complex dynamic hierarchical
data (e.g., data structure changes).

6 Conclusion

In this paper, we propose an efficient and topology-preserved
visualization approach, called PowerHierarchy, for visual-
izing hierarchical data. An improved version of the power
diagram computing algorithm from [8] is presented to
achieve better efficiency and accuracy, which computes a
CVT after random initialization. Then it utilizes Newton’s
and L-BFGS methods to calculate the visualization layouts.
On this basis, an updating scheme is introduced, where the
previous results are fed as inputs to initialize current layouts.
Those external sites and their subsites are iteratively pro-
jected into the visual boundary and thenmoved into the visual
region. Experimental results on several datasets demonstrate
the effectiveness and accuracy of PowerHierarchy for visu-
alizing hierarchical data. Besides, the topological structures
of visualization layouts generated by the updating scheme
could be preserved during in-between frames.

Limitations and future work However, there is a com-
mon issue in the hierarchical data visualization technique
via Voronoi treemaps. Some irregular cells may appear in
the visualization layouts when the difference between two
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nodes with the same parent is too large, as shown in Fig. 12
(the cell corresponds to the GDP of Australia). In addition,
our proposed visualization approach could be extended to
simple non-convex visualization region shapes (such as the
flower shape in Fig. 8a). Still, it is not suitable for these shapes
with more complex boundaries. In the future, we would like
to extend our work with other treemap techniques to improve
visualizing complex hierarchical data with complex bound-
aries.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-023-02864-
4.
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