The Visual Computer
https://doi.org/10.1007/s00371-023-02864-4

ORIGINAL ARTICLE l')

Check for
updates

PowerHierarchy: visualization approach of hierarchical data via power
diagram

Yuyou Yao' - Tao Li' - Wenming Wu' - Gaofeng Zhang? - Liping Zheng'

Accepted: 2 April 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Voronoi treemaps are widely used for hierarchical data visualization. Existing methods calculate the visualization layouts of
hierarchical data by combining the proportion optimization of weights and Lloyd’s method of sites. However, this may not only
produce results with large area errors but also require more time consumption. Besides, the relative visualization position of the
same data element between adjacent frames in dynamic hierarchical data may be changed abruptly, resulting in unclear visual
results. To this end, we propose an efficient and topological structure preserved visualization approach, called PowerHierarchy,
for visualizing hierarchical data. Firstly, an improved version of the power diagram computing algorithm is introduced to
generate the visualization layouts of each data element in the hierarchy. Unlike random initialization, we construct a centroidal
Voronoi tessellation as input and then use a Breadth-First traversing strategy to adapt the depth information to produce visual
layouts of static hierarchical data. Based on this, an updating scheme is presented for visualizing dynamic hierarchical data,
where previous results are iteratively fed as inputs to initialize current layouts. Besides, the external boundary sites and their
subsites are projected onto the visual boundary and then moved into the visual region with the relative position preserved.
Experimental results on several datasets demonstrate the efficiency, accuracy, and topology preservation advantage of our
proposed visualization approach.

Keywords Power diagram - Treemap - Hierarchical data - Visualization

1 Introduction

Hierarchical data have been frequently used in our daily
life and practical applications, e.g., digital document orga-
nization, class design in the software development process
[1], etc. Time-dependent hierarchical data, also known as
dynamic hierarchical data [2], have recently appeared in var-
ious fields, e.g., the real-time data monitoring system, etc.
In view of the characteristic of hierarchical data, the rest,
except dynamic hierarchical data, can be considered static.
To completely capture the underlying information in these
hierarchies, data visualization techniques are used to make
them more accessible and understandable.

B< Liping Zheng
zhenglp @hfut.edu.cn

School of Computer Science and Information Engineering,
Hefei University of Technology, Hefei 230601, China

School of Software, Hefei University of Technology, Hefei
230601, China

Published online: 09 May 2023

As an efficient visualization technique, Voronoi treemaps
combine the classical treemaps with the ordinary Voronoi
diagram or weighted Voronoi diagram (power diagram). This
method recursively subdivides the visual region into nested
polygonal subregions to produce visualization results, as
shown in Fig.1. In view of visualizing static hierarchical
data, existing methods mainly involve (1) centroid optimiza-
tion and (2) weight optimization. The fundamental principle
of these methods [4] is to simultaneously increase or decrease
the weights proportionally to the missing or excess area and
optimize each site to its cell center by Lloyd’s method [3, 5].
However, the weights optimized in this manner may cause
tiny or even empty cells, resulting in a significant area error
of subregions in the generated visualization results, as shown
in the red and blue regions in Fig. 1. In addition, to the best
of our knowledge, Lloyd’s method is the simplest but not
the best way for centroid optimization, which requires much
more time consumption.

In terms of dynamic hierarchical data visualization via
Voronoi treemaps, several variants extend the static hier-
archical data visualization techniques. A dynamic Voronoi

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Y. Yao etal.

Fig. 1 In the results generated by the algorithm in [3], area errors in
target size are indicated by color (red = too big, white = correct, blue =
too small), where color denotes the degree to which the actual size of a
target area deviates from its expected size

treemap (DVT) [6] is proposed to maintain a desirable aspect
ratio for time-varying hierarchical data. However, it suffers
from the instability of a large variance jump in the region
position. Sud et al. [7] present a GPU-based approach for
visualizing dynamic hierarchical data, where the additively
weighted Voronoi diagram is calculated by GPU accelerating
during frames, and the previous layouts are utilized to ini-
tialize current Voronoi treemaps. However, similar to DVT,
the topology structures of visualization layouts produced by
this method cannot be preserved in each frame, as shown in
Fig. 13a—d. That is, the regions corresponding to the same
data element may “jump”’ between adjacent frames.
Therefore, we focus on the limitations of previous work
on computing Voronoi treemaps, and the topological struc-
ture preservation of layouts is taken into consideration.
Unlike existing methods, we propose an efficient visu-
alization approach called PowerHierarchy, for visualizing
hierarchical data. To achieve it, we first borrow the idea
of numerical optimization to calculate the layouts for static
hierarchical data visualization instead of using proportion
optimization and Lloyd’s method. Specifically, we designed
an improved version of the power diagram computing algo-
rithm from [8]. A centroidal Voronoi tessellation (CVT) is
calculated as input rather than random initialization to avoid
a variety of corner cases (e.g., empty cells, etc.) for better
computation stability. Based on this, an updating scheme is
presented for visualizing dynamic hierarchical data. Like [7],
the previous results (weights and sites) are fed as inputs to
initialize current Voronoi treemaps in our updating scheme.
However, the presence of these external boundary sites may
cause a large variance in the regional location, resulting in
the topological structures of layouts cannot be preserved.
Hence, we design a projection method, combined with the
initialization strategy, to preserve the topological structure of
layouts during in-between changes. Those external boundary
sites and their subsites are projected onto the visual bound-
ary and then moved into the corresponding visual region.
Experimental results on various static datasets demonstrate

@ Springer

the effectiveness, efficiency, and stability of our method.
Besides, the PowerHierarchy is also used to visualize the
2010-2019 global GDP and the 2019-2022 consumer price
index. These dynamic hierarchical data results validate the
topology preservation of visualization layouts between adja-
cent frames. We contribute the following:

e An improved version of the power diagram computing
algorithm from [8], generating visualization results for
static hierarchical data with better stability, efficiency,
and accuracy.

e An updating scheme to visualize dynamic hierarchi-
cal data with the topological structure of visualization
layouts is preserved, avoiding the possibility of the rela-
tive position of the same data element between adjacent
frames changing abruptly.

Even though numerical optimization is used for power
diagram computation and other applications, to the best of
our knowledge, PowerHierarchy is the first method to apply
it for visualizing hierarchical data. Using Newton’s and the
L-BFGS methods to compute the visualization layouts signif-
icantly improves the computational efficiency and accuracy
of visualization results than state-of-the-art methods via
Voronoi treemaps. Additionally, the topological structure
preservation of layouts during frames is considered in Power-
Hierarchy, which allows it to generate smooth visualization
layouts without “jump”, which is superior to existing meth-
ods based on Voronoi treemaps.

The remainder of this paper is organized as follows. Sec-
tion?2 briefly reviews related work. Section 3 introduces the
preliminary power diagrams and Voronoi treemaps. Pow-
erHierarchy for hierarchical data visualization is explained
in Sect.4. In Sect.5, some experimental results on various
datasets are provided to evaluate the efficiency and accu-
racy of PowerHierarchy, and some conclusions are given in
Sect. 6.

2 Related work

In this section, we briefly review the hierarchical data visual-
ization with Voronoi treemaps, and then the prior approaches
to the computation of power diagrams are discussed. An
exhaustive review of data visualization methods could be
referred to [9, 10], and we focus on the visualization meth-
ods with Voronoi treemaps in the following.

2.1 Static hierarchical data visualization
Treemaps [9, 11] have been widely used to visualize hierar-

chical data, which apply the recursive space-filling approach
to subdivide the 2-dimensional plane into nested subregions.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



PowerHierarchy: visualization approach of hierarchical...

Each node in the hierarchy has a name and associated value.
Over the past three decades, studies have introduced various
techniques to produce visualization layouts, e.g., Slice and
Dice [12], Squarified treemaps [13], circular treemaps [14],
ordered treemaps [15, 16], and bubble treemaps [17], etc.
Voronoi treemaps, a powerful technique for hierarchical data
visualization with the polygonal visual region, have received
much attention from researchers.

Balzer and Deussen [4] introduce the basic iterative algo-
rithm for Voronoi treemaps. Lloyd’s method is utilized to
compute the centroidal Voronoi diagrams, coupled with the
weight adaption method to control cell areas. The weights
of sites are increased or decreased proportionally to the
missing or excess area. However, small or empty Voronoi
cells may appear this way, affecting the computation sta-
bility of Voronoi treemaps. Nocaj and Brandes [5] propose
a resolution-independent analytic method to compute the
power diagrams, which improves the weight optimization
scheme to reduce the number of iterations and achieve fast
computation. Nevertheless, this method limits the weight of a
new site to the minimum distance of the cell it belongs to and
its maximum weight, which may cause many Voronoi cells
to be small. Hahn et al. [3] introduce a weaker limit weight
optimization method, which limits the weight of a new site to
the minimum distance of the nearest neighbor site. Though
this method could circumvent too small Voronoi cells, some
cells still have large area errors, as shown in Fig. 1.

The essence of these methods to visualize static hierar-
chical data is the proportion optimization for weights and
Lloyd’s method for sites [3-5], as shown in Table 1. How-
ever, this may require more iteration and cannot generate
high-accuracy visualization results, as shown in Fig. 1. In
this paper, we first borrow the idea of numerical optimiza-
tion [8] and apply it to hierarchical data visualization. Unlike
previous work [3], we utilize Newton’s method for weight
optimization to produce a more accurate visual layout. The
L-BFGS method with super-linear convergence is used for
site optimization rather than Lloyd’s method with linear con-
vergence. Moreover, to improve the computation stability of
our method, we calculate a CVT before the weight and site
optimization, which is fed as input to produce the visual lay-
outs.

2.2 Dynamic hierarchical data visualization

Dynamic hierarchical data is also referred to as time-
dependent hierarchical data, where the structure and value
of data elements change over time. A straightforward visu-
alization way is to recalculate the layout as data changes, but
it is time-consuming. Several approaches [18, 19] have been
introduced to improve the stability and efficiency of visual-
izing dynamic hierarchical data [2]. Here we focus on these
methods using Voronoi treemaps.

For visualizing dynamic hierarchical data based on Voronoi
treemaps, Gotz et al. [6] present a DVT technique to main-
tain a desirable aspect ratio. They randomly initialize the
Voronoi treemap as data changes and then optimize the
weights and sites to produce visualization results. Never-
theless, there may be a large variance jump in the regional
position when rendering dynamic data, and the optimiza-
tion based on random initialization is time-consuming. Sud
et al. [7] developed a GPU-based technique for visualizing
dynamic hierarchical data via additively weighted Voronoi
diagrams. The previous layouts are taken as inputs to initial-
ize current Voronoi treemaps. This method achieves better
computational efficiency due to the parallel calculating of
the additively weighted Voronoi diagram and the initial-
ization with previous layouts. However, the topological
structures of visualization layouts of two adjacent temporal
data sequences generated by [7] are not guaranteed to pre-
serve, which causes the results to be unclear and confusing,
e.g., the “jump” in Fig. 13b—d.

This paper considers topological structure preservation,
and we introduce an updating scheme for visualizing dynamic
hierarchical data. Similar to [7], the current Voronoi treemaps
are initialized with previous layouts. More importantly, these
external boundary sites and their subsites are projected onto
the visual boundary, then moved into the visual region with
relative position preserved.

2.3 Power diagram & its computation

As a significant extension of the Voronoi diagram, the power
diagram assigns a weight to each site to achieve the capacity-
constrained characteristic. Centroidal power diagram (CPD)
defines a particular power diagram where each site is located
at the mass center of its power cell, thereby producing a good
1:1 aspect ratio. Based on this, combined with the capacity
constraints, a centroidal capacity-constrained power diagram
(CCCPD) is obtained, which could be applied to hierarchical
data visualization.

Several methods have been introduced to calculate the
CCCPD. Balzer [20] presents a false-position method to opti-
mize the weights, augmented by Lloyd’s method to optimize
the sites, producing the CCCPD. Owing to the one-by-one
iteration strategy, this method is inefficient. De Goes et al.
[21] utilize Newton’s method to optimize weights, which sig-
nificantly improves the computational efficiency of CCCPD.
Furthermore, Xin et al. [8] apply the L-BFGS method with
super-linear convergence to optimize sites rather than Lloyd’s
method with linear convergence. Recently, Zheng et al. [22]
extended the capacity constraints to the general cases and
introduced the hybrid capacity-constrained centroidal power
diagram (HCCCPD). With the development of hardware,
existing methods take advantage of GPU to compute the
power diagram [7]. Zheng et al. [23] provide a GPU-CPU

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Y. Yao etal.

Table 1 Briefly review of

s Method Data Optimization Topology
existing methods for - - =
. . . L Weight Site Initial Preserve

hierarchical data visualization

via Voronoi treemaps Balzer [4] Static Proportion Lloyd X X
Nocaj [5] Static Proportion Lloyd X X
Hahn [3] Static Proportion Lloyd X X
Sud [7] Dynamic Proportion Lloyd Previous X
Gotz [6] Dynamic Proportion Lloyd Random X
Ours Static & Dynamic Newton L-BFGS Previous v

hybrid algorithm to accelerate the construction of the power
diagram, thereby significantly improving the computational
efficiency.

In view of visualizing hierarchical data via power dia-
grams, existing methods extend the algorithm in [4] to
improve the stability of visual layout computation, as shown
in Table 1. However, these methods optimize weights propor-
tionally and update sites by Llody’s method, which causes
more time consumption and large area error. Motivated by
numerical optimization in previous work, we introduce an
improved version of the power diagram computing algorithm
from [8] to calculate the visualization layouts.

Overall, to highlight the limitations of previous work
and emphasize the motivation of our work, Table 1 pro-
vides a brief review and comparison of existing methods
for hierarchical data visualization via Voronoi treemaps.
For visualizing static hierarchical data, previous work has
used proportional weight optimization coupled with Lloyd’s
method to generate visualization layouts, which may cause
small or even empty cells with large area errors, as shown
in Fig. 1. In view of dynamic hierarchical data, some tech-
niques have designed various initialization strategies to speed
up the visualization layout computation for each frame, but
the topology is not considered, resulting in the visualiza-
tion layouts being unclear and confusing. To address these
problems, we provide a visualization approach called Pow-
erHierarchy for hierarchical data visualization. On the one
hand, we propose an improved version of the power diagram
computation algorithm in [8], using Newton’s method for
weight optimization and the L-BFGS method for site opti-
mization to quickly generate accurate visualization layouts
of static hierarchical data. On the other hand, we introduce
an updating scheme for dynamic hierarchical data visualiza-
tion, where the previous results are taken as initialization of
current layouts, and these external boundary sites and their
subsites are moved into the current visual region with the
relative position preserved, producing visualization layouts
with topology preservation.

@ Springer

3 Preliminary

In this section, we discuss the definition of the power diagram
and its variants. The Voronoi treemaps are then explained in
detail.

3.1 Voronoi diagram & power diagram

The Voronoi diagram (also called “Voronoi tessellation”)
[24] defines a spatial subdivision of a given domain  C R2.
Given a set S = {s;}_, of n distinct points (also called
“sites”) in the plane. Based on the Euclidean distance, the
Voronoi diagram is a partition of the domain €2 into n regions
V = {V(s;)}]_, without producing holes or overlaps. Each
region V (s;) of the site s;, called Voronoi region, is defined
as:

Visi) ={s € Qllls —sill < lIs —s;ll.Vj #1} ey

As an extension of Voronoi diagrams, power diagrams [25]
introduce weights W = {wi}l’.’: | to sites, that is, a parame-
ter w; is assigned to each site s;. Each region P (s;) (called
“power cell”) is redefined as:

P(s)) ={s € Qllls —si|*> —w; < |Is — ;1> —w;,Vj # i)
)

where d (s, s;) = ||s —s;||> — wj is redefined as the power dis-
tance. The power diagram degenerates to a Voronoi diagram
when the weights of all sites are equal [25].

3.2 CCCPD

The area of a power cell depends on the relative position
of the site and its neighbors. Power diagrams introduce a
weight to each site, having precise capacity constraints. By
imposing the centroid and capacity constraints on each site,
we can obtain a CCCPD. That is, each site s; is located at the
mass center of its power cell P(s;), and the capacity (e.g.,
area, etc.) m; is equal to the target value ¢;:

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



PowerHierarchy: visualization approach of hierarchical...

Ql =10,,0,,..,0,} C 0

0, = 104,01,04,0,} € O

Q :{QI’QE}

Fig. 2 Exemplification of a Voronoi treemap in the squared visualiza-
tion domain, where O = {0}, 02, - -+ , 013} represents the set of data
nodes, and the polygonal regions are the corresponding visualization
layouts

. _ f]mi)sp(x)ds
P = Ty p0S

mi = [py P(S)ds = ci
Yoimimi = [o p(s)ds

§i =S

3)

where p (s) represents the density and s denotes the centroid
of the power cell P(s;). Aurenhammer et al. [26] introduce
the formulation F' (S, W) of the optimal power diagram, and
the gradient of F (S, W) can be shown as [21]:

F(S,W)=2101 [p Is = sillPds =201y wi(mi —ci)
Vi, F(S, W) =¢c; —m;

v 1 |6’fj|
wilj =73 g

Vi F(S, W) =2m;(s; — s7)
“)

where ¢;; represents the regular edge between two adjacent
sites s; and s;, and e?‘j refers to the dual edge separating
the power cell P(s;) and P(s;). Notably, the CVT could be
computed based on Eq. (4) by setting all weights of sites
equal [27].

3.3 Voronoi treemap

A Voronoi treemap [4] is the recursive subdivisions of a
region into the cells of a centroidal Voronoi diagram (CPD is
considered in this paper), and that is defined in the following.
Let O = {o1, 03, ..., 0,} denote a set of objects, associated
with positive values v; € R > 0,i = 1,2, ..., n. Based on
the description in [5], the additive extension to subsets of
O C O isdefined: V(Q) = Zi:er ;.

The hierarchical partition of O is a rooted tree 7 =
(Q, E; r), where nodes Q represents the subset of O, and
edges E explains the set inclusion. The root r € Q repre-
sents O, and the leaf nodes are the singleton sets {0;}"_;.
Each inner node expresses the set formed by the union of its
children sets.

The hierarchical partition is represented by the Voronoi
treemap. The bounded region Vg, represented the entire
objects, is subdivided by a set of centroidal Voronoi diagrams,
in which these Voronoi cells are recursively subdivided such
that the leaf nodes are denoted by these cells with an area
proportional to their value. The children of each ¢ € Q are
represented by child(q), and the target area of ¢ € child(q)
is A(V,)- 49 where A(V,) is the area of the region V,, v(c)

v(g)’
and v(q) are the value of data node.

4 PowerHierarchy for hierarchical data
visualization

The majority of PowerHierarchy is static hierarchical data
visualization (Sect.4.2) and dynamic hierarchical data visu-
alization (Sect.4.3). Before that, the problem of visualizing
hierarchical data is discussed (Sect.4.1).

4.1 Problem statement

Voronoi treemaps recursively divide the primal region into
nested subregions, as indicated in Sect. 3.3. Weighted Voronoi
diagrams address the aspect ratio and area requirement
instead of using the ordinary Voronoi diagram. Two gen-
eralizations, the additively weighted Voronoi diagram and
the power diagram, could be formed by imposing the weight
characteristic on the ordinary Voronoi diagram. The bisec-
tor shape of two neighboring power cells is a hyperbolic
curve in the former, which may cause difficulty in the Voronoi
diagram construction. In contrast, power diagrams produce
straight lines that resemble the ordinary Voronoi diagram.
Therefore, we concentrate on visualizing hierarchical data
using the power diagram in this paper.

Hierarchical data could be classified into two types based
on their characteristic: static hierarchical data and dynamic
hierarchical data. The structure and values of data elements
change in the latter, in contrast to the former, where they
do not. However, regardless of whether the hierarchical data
is static or dynamic, the fundamental components of data
visualization are the following:

(1) Area constraint Power diagrams are used in hierarchical
data visualization to convey data information, with the
area size of each power cell corresponding to the value of
the relative data element. That is, the desired size A?‘rget
of a data node in the hierarchy is the same as the area size
AUt of its power cell P (s;): AU = A:arget.

(2) Centroid constraint Previous work use the CVT to recur-
sively divide the primal region into nested subregions
to address the high aspect ratio of treemaps, which can
enhance the readability of visual results. Therefore, the
centroid constraint is imposed on the layout computation.
That is, the CPD (see Sect. 3.2) is adopted in our work.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Y. Yao etal.

4.2 Visualization of static hierarchical data

Then, an improved version of the power diagram computing
algorithm from [8] is introduced in detail to visualize static
hierarchical data.

4.2.1 Static hierarchical data

Static hierarchical data is frequently utilized in our daily
life, i.e., the organization of a company. The essence feature
of this data is that the structure and value of data elements
never change. Static hierarchical data visualization based on
Voronoi treemaps mainly focuses on calculating the visual
layout of each data node in the visualization region, satisfy-
ing the area and centroid constraints.

Existing methods [3—5] increase or decrease the weights
proportionally to the missing or excess area and optimize
each site to its cell center by Lloyd’s method. However,
these methods may cause large area errors in visualization
layouts (as shown in Fig.1), and more time consumption
is also required. To this end, we introduce a visualization
approach called PowerHierarchy, which recursively com-
putes the power diagram of each data node in the hierarchy,
and power cells are denoted as the visualization layouts.

4.2.2 Visualization layout computation

In this paper, we borrow the idea of numerical optimiza-
tion and apply it to hierarchical data visualization layout
computation in the PowerHierarchy. To achieve it, we intro-
duce an improved version of the power diagram computing
algorithm from [8], which generates the layout of static hier-
archical data progressively based on Eq. (4). Specifically,
a CVT rather than random initialization is taken as input.
Then the following two steps are iteratively performed: (1)
optimizing the weights to comply with the area constraint
by Newton’s method, and (2) optimizing the sites to satisfy
the centroid constraint by the L-BFGS method. Based on
this, the Breadth-First traversing strategy adapts the depth
information, thereby producing the visualization layout of
static heirarchical data. The pseudo-code of visualization
layout computation is given in Algorithm 1, and the rel-
evant computation process is presented in Fig.3. Notably,
the power diagram computing algorithm is experimentally
proved super-linear convergence, and more detailed imple-
mentations could be found in [8].

(1) Weight optimization The area size of each power cell is
strongly related to the weights of its neighbors. Therefore,
to adhere to the area constraint in Sect. 4.1, the first step
is optimizing the weight of each site, that is, A"™" =
A;arget. Similar to [21], Newton’s method is applied for

weight optimization, and the Hessian matrix of F (S, W)

could be calculated based on Eq. (4), where m; is the

@ Springer

Algorithm 1 Visualization layout computation of static hier-

archical data

Require: visual boundary €2, hierarchical data r, termination condition
€

Ensure: visual layouts (Power diagram (S, W))

1: g < r //data node queue

2: while !g.empty() do

3: node < q.front(); q.pop()

4: nNpede < child(node).size()

5. fori=1,2,---,n,04. do // area constraints

6: Cj < 71)(61/‘1&(253;)[”) . A(Vnade)

7:  end for

8: Snode t0 be nypq. randomly generated sites

9:  Compute CVT layout based on Eq. (4)

10:  while § > € do // layout computation of a data node
11: Update weights W by Newton’s method

12: Compute gradients V, F'(Syodes Wiodae) in Eq. (4)
13: Estimate the step-size for Sy,4. by a line-search
14: Update S04, and construct power diagram

15: Compute A" and AL*8¢

16 8 < max{|Acurrent — ALTE )}

17:  end while
18: g < child(node)[i],fori =1,--- ,n
19: end while

current area ;arget of
power cell P(s;).

(2) Position optimization Due to the separation of optimiza-
tion of the weights and sites, Nocaj and Brandes [5] point
out that the L-BFGS method may be applied to com-
pute the visualization layout. Still, its influence on the
power diagram and the area requirements is not guaran-
teed. Xin et al. [8] experimentally prove the super-linear
convergence of the L-BFGS method for computing the
centroidal power diagram, which is empirically faster
than Lloyd’s method with linear convergence. Therefore,
we utilize the L-BFGS method for optimizing the posi-
tion of each site to satisfy the centroid constraint, and the
gradient of F (S, W) with respect to the site s; is given in
Eq. (4).

(3) Improvement The primary power diagram computing
algorithm in [8] employs random initialization, which
suffers from various corner cases, e.g., empty cases. To
circumvent these corner cases, we construct a CVT based
on random initialization as input to improve the stabil-
ity of the layout computation of static hierarchical data.
Notably, there is no need for additional code for the CVT,
and all that is required is to set the weights of all sites to
be equal. Our work sets the termination condition for the
CVT calculation to 1073. Therefore, the CVT could be
generated using the L-BFGS method based on Eq. (4).
Although the CVT computation consumes more time,
we observe that timing only takes up less than 10% of
the total computation time for the visualization layouts.
Moreover, these corner cases, e.g., small or empty cells,
could be avoided, improving computational stability.

AU and ¢; is the target area A

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



PowerHierarchy: visualization approach of hierarchical...

Fig.3 Visualization layout
computation of static
hierarchical data, where a CVT
is calculated as input rather than
a randomly initialized power
diagram

Iteratively optimize

(b) Power diagram construction

(a) Initialization

Although numerical optimization has been used in various
applications, to the best of our knowledge, it is the first time
to be applied for visualizing hierarchical data. Compared
to previous work [3-5], PowerHierarchy could generate
visualization layouts with smaller area errors in less time.
Therefore, the proposed algorithm could be easily extended
to visualize dynamic hierarchical data.

4.3 Visualization of dynamic hierarchical data

Considering dynamic hierarchical data based on Algorithm 1,
PowerHierarchy provides an updating scheme to compute the
visualization layout with the topology structure preserved.

4.3.1 Dynamic hierarchical data

Dynamic hierarchical data is commonly used in daily life,
e.g., the annual visualization of global GDP, etc. A common
feature in these data is that the structures and values of data
elements change over time. Therefore, the visualization of
dynamic hierarchical data is an increasingly essential field
of data visualization.

The data tree structure and the values of data nodes are
two aspects that play a significant role in dynamic hierarchi-
cal data. To be more specific, dynamic hierarchical data can
be classified into three categories depending on these two
characteristics, which are illustrated below with the organi-
zation of computer documents as an example.

e Case 1 The value of a data node changes, but the structure
of the data tree remains unchanged, e.g., modifying some
digital documents.

e Case 2 The structure of the data tree changes, but the
values of data nodes stay constant, e.g., shifting digital
documents to different directories.

e Case 3 The values of data nodes and the structure of the
data tree alter, e.g., modifying some digital documents
and then moving them to other directories.

-«
.
.
P~
G
Z
-

Iteratively o#imize

||
m £ O
\
Layouts Layer 2

(c) Weight optimization (d) Position optimization

The goal of dynamic hierarchical data visualization is
to calculate the visual layout of each data node during in-
between changes. A straightforward way is to recalculate
the visual layout of hierarchical data in each frame, which
is simple but requires more time consumption. Therefore,
previous work [6, 7] introduces several techniques for visu-
alizing dynamic hierarchical data, such as initialization with
previous layouts, GPU acceleration, etc. However, topologi-
cal structures of visualization layout of two adjacent temporal
data sequences are not guaranteed to preserve, resulting in
unclear and confusion, such as position "jump" of the same
data node in an adjacent frame. Therefore, swiftly producing
the visual layouts for each frame while preserving the topol-
ogy is the primary objective of dynamic hierarchical data
visualization in our work. In light of this, PowerHierarchy
offers an updating scheme to visualize dynamic hierarchical
data, using Algorithm 1 as the foundation for computing the
visualization layouts.

4.3.2 Updating scheme

Regarding the structure and value of hierarchical data, as
explained in Sect.4.3.1, three different circumstances are
considered when visualizing dynamic hierarchical data. In
this paper, we propose an updating scheme in PowerHier-
archy to visualize dynamic hierarchical data, where the
topological structures of visual layouts are preserved dur-
ing in-between changes. Figure 4 illustrates the computation
process of dynamic hierarchical data with topology preser-
vation.

Specifically, the initialization strategy using previous lay-
outs is utilized in our method, which is similar to that of [7].
These sites and associated weights are used to initialize cur-
rent Voronoi treemaps, followed by weight optimization and
position optimization to satisfy the area centroid and capacity
constraints. However, as hierarchical data changes make the
visual layout of the same data element vary between frames,
some sites may lie outside their parent’s visual region,
resulting in the position of the same data element chang-
ing abruptly. To this end, we propose a projection strategy

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Y. Yao etal.

Fig.4 An illustration of
dynamic hierarchical data
visualization, where the
topological structure of visual
layout is taken into account. (D
Initialization & external sites
projection; (2) visual layouts
computing by Algorithm 1

Hierarchy

Results

B i

To[]olngy

Updating
Scheme

@ Value change Structure change

@
—_—

a2

Préservafion

Bas| R
->

To ology
Presérvation

to move these external sites to the interior of their visual-
ization region. Subsequently, the subsites of these external
sites are moved to the interior of the optimized visualization
region with a relative position preserved. An explanation of
the updating scheme is given as follows.

(1) Update, insert and delete Based on the categories of
dynamic hierarchical data in Sect.4.3.1 modifying sites (or
regions) in the visual layouts can also be classified into three
types: update, insert and delete. More specifically, updating
the relative region in visual layouts corresponds to changing
the size of a digital document in Case 1. In Cases 2 and 3,
transferring a digital document to another directory refers
to deleting the relevant region from the primal layout and
inserting it into the new layout.

Firstly, as the values of the data nodes in the hierarchy
change, the visualization layout should be updated to reflect
the data information in the hierarchy, as shown on the left
in Fig.4. As only the values of the hierarchical data change,
the current Voronoi treemap can be initialized using the pre-
vious layout (sites and weights) and further optimized using
Algorithm 1 to satisfy the area constraint. Secondly, when the
data tree structure in the hierarchy changes, the relative area
is removed from the previous layout, which is considered
to be inserted into the new layout, and the relative position
is preserved, as shown on the right in Fig.4. Similarly, the
Voronoi treemap is optimized by Algorithm 1 to meet the
area constraint.

A particular scenario exists when the data tree structure is
changed. That is, the dynamic hierarchical data involves new
data node insertions. These newly inserted data nodes have
no relative position or weight information in the previous
visualization layouts. Therefore, randomly initialized sites
representing these newly inserted data nodes are inserted into
the corresponding visualization region with their weights set
to the minimum of their neighbors. This initialization strat-
egy, circumventing the possibility of small or empty cells,
improves the stability of power diagram construction.

(2) External site projection and topology preservation The
above initialization strategy utilizes the previous visual
results as inputs to initialize the current visual layouts. The

@ Springer

Fig.5 Exemplification of the external site projection, where the exter-
nal site s; is projected onto the visual boundary and then moved into
the visualization region

Breadth-First traversing strategy in Algorithm 1 generates
the visualization layout of each data node. However, due to
changes in hierarchical data in adjacent frames, the visualiza-
tion layout of the same data element may differ, resulting in
some sites (called “external sites”) outside the current visual
region.

For these external sites, additional processing is vital to
preserving the topology of visual layouts during in-between
changes. To be more specific, two-stage processing is carried
out sequentially: (1) projecting them onto the visual bound-
ary, and then (2) moving them inside the visual region. As
shownin Fig. 5, let s; represent an external site, and blue lines
denote the visual boundary. We first project the external site
s; onto the visual boundary, and the projected point is marked
as S¢lpse- Thatis, S¢ose 18 the nearest point to s; from inside its
visual region (despite being located on the boundary). Then,
the internal site srleW as the site of s; inside the visual region,
could be calculated as: 57V = Sclose + A(Sclose — Si), Where
the parameter A is the offset of the projected point. To cir-
cumvent “jump” in the position of the same data element in
the visualization layout between adjacent frames, the param-
eter A is set to 0.01 so that the internal site s;°V is as close
as possible to the external site s;. Following the two-stage
processing, visualization layouts are generated by applying
the optimization approach in Algorithm 1 to satisfy the area
and centroid constraints.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



PowerHierarchy: visualization approach of hierarchical...

. .

Lo . . .

@7 region
site

(outside) o o o

[~
subsites

. . .
projection & movement initialization visual region

Fig.6 Exemplification of the topology preservation of layouts with an
external site and its subsites. Top row: the projection of an external site
to its visualization region (red squared region); and bottom row: the
movement of these subsites with their relative position preserved (top

As shown in the top row of Fig.6, sites outside the
visualization region are first moved to the inside of their rel-
evant region (red squared region). Thus, the current Voronoi
treemap is initialized by combining the positions and weights
of other sites. Based on this, combining the weight opti-
mization and position optimization, the visualization layout
is optimized to satisfy the area and centroid constraints, as
shown in the last figure in the top row of Fig. 6 (assuming the
same area constraint for all sites here).

In contrast to the projection strategy described above, the
movement of the subsites of these external sites relies on the
visual layout calculation. Owing to the Breadth-First travers-
ing strategy in Sect. 4.2, the visual layout of their parent site is
determined when computing the visual layouts of these sub-
sites. These subsites are scaled and moved directly into the
calculated visual region while retaining their relative posi-
tions, as shown in the first figure in the bottom row of Fig. 6.
Then, the positions and weights are used as initialization
(middle figure in the bottom row of Fig.6), combined with
weight optimization and position optimization to produce the
visual layout, as shown in the last figure in the bottom row
of Fig.6.

Therefore, the external site projection and topology
preservation could be summarized as (1) these external sites
are projected onto the visual boundary and then moved into
the relevant visual region (top in Fig. 6), and (2) their subsites
are scaled and moved into the optimized visual region with
their relative position in previous layout preserved (bottom in
Fig. 6). Consequently, our method could effectively preserve
the visualization layouts during each frame for visualizing
dynamic hierarchical data.

left region). From left to right: projection and movement exemplifica-
tion; initialization with the previous weights and the positions of the
moved sites; optimized visualization layouts

5 Performance evaluation

We implement and experiment with PowerHierarchy on a
computer with a 64-bit version of Winl0 system, a 3.6 GHz
Intel (R) Core (TM)17-9700K CPU, and 16 GB memory. The
coding language is C++, and the platform is Microsoft Visual
C++ 2012. It should be mentioned that the compared meth-
ods are reimplemented in C++, and the power diagrams are
constructed by Computational Geometry Algorithms Library
(CGAL—4.7).

5.1 Datasets

We perform the test on a variety of datasets, including the
Dataset of China Plant (DCP), the Flare class hierarchy
dataset (Flare) [28], the KEGG orthology dataset (KEGG)
[29], the global GDP dataset (GDP) [28], and the Consumer
Price Index Dataset (CPI), to confirm the effectiveness of
PowerHierarchy.

(1) DCP The DCP is a scientific dataset of plant species
in China established by the Institute of Botany, Chi-
nese Academy of Sciences. With over 30 000 species in
roughly 300 families, the dataset primarily provides basic
information concerning the systematic categorization of
plant species. In the experiment, we select a portion of
the species data consisting of five layers with 157 nodes,
where the value of each data node indicates the number
of species under the corresponding family category.

(2) Flare The Flare project [28] is an ActionScript frame-
work for developing visualizations that run in the Adobe
Flash Player, which has a hierarchical software structure
consisting of four layers with 220 nodes. In this dataset,
the value of each data node represents the size of the
corresponding source file in the Flare project.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Y. Yao etal.

Fig.7 Visualization illustration
of five revisions of a

hierarchical data from DCP, i
where the area size reflects the ‘
value of its relative data node \

l“~ level 4 i“% level 5
& &

(3) KEGG The KEGG [29]is a dataset of molecular activities
expressed as function orthologs, composed of four layers
and 17600 nodes. In our tests, the top four KEGG Path-
way map categories are chosen, where the value of each
data node shows the number of subordinate categories.

(4) GDP The GDP dataset [28] separates the global GDP into
seven categories: Asia, North America, South America,
Europe, Australia, Africa, and the Rest of the World. Note
that the GDP dataset consists of two layers with 42 nodes
since these countries or regions with a GDP of less than
300 billion are included in the last category. Addition-
ally, our tests use the global GDP from 2010 to 2019 as
dynamic hierarchical data.

(5) CPI The CPI datasetis adynamic hierarchical dataset that
counts all Chinese provinces in the first quarter of 2019 to
2022. We collect detailed data from the National Bureau
of Statistics of China. All areas in China are classified
into six modules based on the geographical location of
the province: North China, Northeast China, East China,
South Central China, Southwest China, and Northwest
China. The value of each data node indicates the per
capita consumer expenditure of residents in the corre-
sponding province.

5.2 Evaluation for static hierarchical data
5.2.1 Visualization results

To demonstrate the feasibility of our approach, several tests
are performed on these datasets provided in Sect.5.1. Our
method’s fundamental principle is recursively computing
each data node’s visual layout. Thus, we first compute the
visualization results of hierarchical data in the DCP dataset
on a circular region to illustrate the computational flow of
our method. The generated visualization layouts of five lay-
ers are presented in Fig.7, and the original visual region is
shown in Fig. 7a. Furthermore, to verify the robustness and
effectiveness of our method, we conduct more experiments
on DCP, Flare, and KEGG datasets to visualize more com-
plex hierarchical data. The primal visual regions are set to the
shapes of a flower, an elliptical, and a squared region. Figure 8

@ Springer

A s
| level 1 level 2 level 3
e . ®) ' ©

Iy
(© @:.5: 0

presents the corresponding visualization results. The results
in Fig. 7 demonstrate the feasibility of our method, and those
in Fig. 8 further indicate the effectiveness and robustness of
visualizing more complex hierarchies, even with the flower
visual boundary.

5.2.2 Comparison

To evaluate the superiority of our method, we compare the
proposed method with three hierarchical data visualization
methods, including the Slice & Dice treemap [12], the Squar-
ified treemap [13], and the Voronoi treemap [3]. Due to the
restrictive nature of the primal visualization region in the
Slice & Dice treemap [12] and the Squarified treemap [13],
we set a square visualization region as the input visual region.
Figure9 presents the visualization results of various meth-
ods in three datasets. Figure 10 demonstrates the associated
violin plots of the aspect ratio of produced visualization
layouts. The aspect ratio of a power cell is calculated as
ratio(P (s;)) = min{w/h, h/w}, where w and & are the width
and height of the power cell P (s;). Notably, a power cell that
has an aspect ratio close to 1 implies greater visibility.

According to the results in Figs.9 and 10, we can observe
that the Slice & Dice treemap [12] typically generates cells
with a high aspect ratio, leading to the results being unclear
and difficult to understand. To circumvent these high aspect
ratio cells, the Squarified treemap [13] utilizes the greedy
algorithm to produce the visualization layouts of hierarchi-
cal data. Nevertheless, despite the attractive aspect ratio of
the visualization results, it is a challenge to determine the
relationships between the data nodes in the hierarchy. In
view of visualizing hierarchical data using Voronoi treemaps,
the results produced by PowerHierarchy perform better than
those in [3]. In particular, PowerHierarchy yields more reg-
ular cells with a better aspect ratio, as shown in the red
wireframes of Fig. 9.

5.2.3 Computational efficiency

Computational efficiency is a vital indicator of a visual-
ization approach. A good visualization approach should be

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



PowerHierarchy: visualization approach of hierarchical...

Fig.8 Visualization results of hierarchical data by PowerHierarchy in
three datasets, where each cell area corresponds to the value of data
element in the hierarchies. From left to right: visualization result in the
Dataset of China Plant (DCP, five layers with 157 nodes), the Flare
class dataset (Flare, four layers with 220 nodes), and the KEGG dataset

Fig.9 Computational results of
four different visualization
methods on GDP, Flare, and
DCP datasets, where the same
color regions corresponds to the
same data nodes in the
hierarchies. From left to right:
results obtained by Slice & Dice
treemap [12], squarified treemap
[13], Voronoi treemap [3] and
PowerHierarchy

GDP

Flare

DCP

(a)Slice & Dice[12] (b) Squarified [13]

Environmental

(KEGG, four layers with 17600 nodes). Taking the Flare class dataset
as an example, the hierarchical relationship of data elements is shown
as: vis (first layer), opera (second layer), layout (third layer), and stack
(fourth layer)

(c) Hahnet al. [3] (d) Ours

=3

ratio

3 050

e
o
<

Aspect ratio
Aspect

Aspect ratio

025}

0.00

Slice & Dice  Squarified ~ Hahn et al. Qurs

(a) GDP

Slice & Dice ~ Squarified ~ Hahn etal. Ours

(b) Flare

Hahn etal. Ours

Slice & Dice  Squarified

(c) DCP

Fig. 10 The violin plots of the aspect ratio of the layouts obtained using various methods, corresponding to these results in Fig.9

able to compute the visualization layouts of hierarchical data
relatively quickly, and the area error of the generated visu-
alization results should be as small as possible. Treemap
recursively computes the layouts of data elements for each
layer in the hierarchy. Thus, the timing of the layout com-
putation for single-layer data elements is closely related to
the computational efficiency of the visualization approach.
To compare the performance of PowerHierarchy with other
methods, we design an experiment with the various sites and
count the corresponding computational time of the visual-
ization layouts. Besides, we also calculate the area error

of the visualization layouts of different methods with the
same iteration, where the area error € could be calculated by
max{| AUt — A;arget|}. Table 2 presents the computational
time and the area error of different methods. Notably, to keep
things consistent, the area accuracy is the same when com-
paring computational efficiency of different methods (Table
2).

The results in Table 2 show that the Slice & Dice treemap
[12] and Squarified treemap [13] achieve better computa-
tional performance. They directly compute the rectangular
visualization layout corresponding to each data element with-

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Y. Yao etal.

Table 2 Computational time

. Nodes (n) Methods Timing (s) Area error of same iterations

and area accuracy comparison Fier =20 Flier =30 Fier =40

of PowerHierarchy and other

MEEOdS 10 Slice & Dice [12] 0.083 0.000 0.000 0.000
Squarified [13] 0.132 0.000 0.000 0.000
Hahn et al. [3] 0.957 8.941E-2 5.472E-3 6.459E-4
Ours 0.393 6.861E-5 3.186E-7 6.521E-9

50 Slice & Dice [12] 0.382 0.000 0.000 0.000

Squarified [13] 0.517 0.000 0.000 0.000
Hahn et al. [3] 6.485 8.149E-2 6.617E-3 2.752E-4
Ours 3.316 5.793E-4 7.836E-6 8.711E-9

out iterative optimization. Thus, these two methods produce
visualization layouts with an area error of 0. However, it is
well-known that the primal visual region of these two meth-
ods can only be rectangular, and the generated visual layouts
have an unsatisfied aspect ratio of the Slice & Dice. In view of
the visualization approach via Voronoi treemaps, the method
provided by Hahn et al. [3] optimizes the weights propor-
tionally while optimizing the sites using Lloyd’s method to
generate visualization results. This method, however, takes a
lot longer. Unlike [3], using numerical optimization, Pow-
erHierarchy combines the L-BFGS method for sites with
Newton’s for weights to yield the visualization layouts. Addi-
tionally, our method computes a CVT as input to prevent
some corner situations (e.g., empty cells, etc.), improving
the computational efficiency while enhancing the stability
of power diagram construction. The results in Fig. 2 provide
evidence that PowerHierarchy could achieve more accurate
visualization layouts with less time consumption. Thus, it
is possible to apply PowerHierarchy for visualizing time-
dependent hierarchical data.

5.3 Evaluation for dynamic hierarchical data
5.3.1 Visualization results

To demonstrate our method’s effectiveness and topology
preservation, we perform our method in the 2010-2019
global GDP dataset. The 2010-2019 global GDP dataset
includes statistics on the GDP of each nation and area from
2010 to 2019. All countries and regions are classified into
seven groups based on their geographic location and GDP
values: Asia, North America, Europe, South America, Aus-
tralia, Africa, and the Rest of the World. The GDP value of
every nation and region is tallied online, and those with too
low GDP (less than $300 billion) are included in the Rest of
the Word section.

Figure 11 provides the visualization results of the yearly
global GDP, using the original GDP data as the sole input in
our system. Additionally, Fig. 12 presents our visualization

@ Springer

system, and more dynamic results are provided in the supple-
mentary video, e.g., the addition, deletion, and modification
of data nodes, etc. These experimental results demonstrate
the effectiveness and feasibility of our method. Thanks to the
animated visualization results, these economists could more
easily track changes in the global GDP. Taking the GDP of
Asia as an example, the region with the label “CN” stands
for the GDP of China, while the region with the label “JP”
denotes the GDP of Japan. The results in Fig. 11 demonstrate
that China’s GDP is steadily growing in relation to Japan’s
GDP, indicating that China’s economy is of significance in
Asia.

5.3.2 Comparison & computational efficiency

In view of visualizing dynamic hierarchical data, we com-
pare PowerHierarchy with the one put forward by Sud et
al. [7] on a three-level DCP dataset. Three situations are
considered: (1) raising the values of data nodes; (2) chang-
ing the structure of the data tree; and (3) altering both (1)
and (2). Specifically, the first situation involves raising the
value of a node named “Ostrya Scop.”, and the second sit-
uation corresponds to switching the structure of a subtree
named “CAES. TAUB.” from a node “LEGUMINOSAE” to
“BETAULACEAE”. Notably, the method presented by Sud
etal. [7] employs the additively weighted Voronoi diagram to
compute the visualization layouts. To maintain experimental
consistency, the method in [7] is reimplemented in C++ using
a CPU, and power diagrams are utilized as the foundation for
visualization layout computation. The results of visualizing
dynamic hierarchical data are shown in Fig. 13, where the
green star indicates the nested regions of the node with value
change, and the regions with red borderlines designate the
node with structural change in the hierarchy. Table 3 reports
the computational time of these results.

Furthermore, to validate the superiority of our method,
we conduct an additional comparative experiment with the
method proposed by Sud et al. [7] on another dynamically
hierarchical dataset, namely the CPI dataset. The CPI dataset

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



PowerHierarchy: visualization approach of hierarchical...

4=
(f) 2015
== Asia == North America

(g) 2016

Fig. 11 Visualization layouts and the computational timings (in sec-
onds) of the global GDP from 2010 to 2019, where the color regions
represent different continental plates in the world (colored by the Tree-

(h) 2017
Europe == South America == Australia == Africa == Rest of the World

1.135s
—

(i) 2018 (i) 2019

Color [30]). The subregion labeled “CN” corresponds to the GDP of
China, “JP” represents the GDP of Japan, and “DZ” denotes the GDP
of Algeria

Fig. 12 A screen capture of our
system showing the layouts of
our proposed visualization Menu

approach in use to view the —
Data File 010 2019.ison ’
Select Clear "

Data Visualization
global GDP from 2010 to 2019
P

/
N
G

Data

Total value  75.08

Layers 2 ' I s
Nodes 49 ‘ ol I North America
Europe
[ Rest of the Worid
I south America
Setting ‘ I custraia
I strica
Shape Circular b
Color  Theme1 v Hierarchy Histogram
Level 2 v Name Value Code
G 2012 o v world 75.08 world
xoup > Asia 2527 AS -
v North America 19.22 NA E
United States  16.2 us g
Canada 1.82 CA
d @ & @ Mexico 12 MX

Fig. 13 Experimental results of
visualizing dynamic hierarchical
data by PowerHierarchy and the
method in [7]. Top row: results
generated by the method in [7],
and bottom row: results
generated by PowerHierarchy.
The previous visualization result
is shown in a; b and e are results
of situation (1); ¢ and f
represent results of situation (2);
and d and f denote results of
situation (3)

Sud et al.

(a) origin layout §

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Y. Yao etal.

Sud et al.

Ours

(a) 2019 (b) 2020

(c) 2021

North China
Northeast China
East China

South Central China
Southwest China

Northwest China

(d) 2022

Fig. 14 Visualization layouts of different methods on the 2019-2022 CPI dataset from China, where the color regions show the detailed information

of the relevant province

Table 3 Computational time of the visualization layouts generated by
the method in [7] and PowerHierarchy (corresponding to these results
in Fig. 13)

Methods Layouts #lter Time (s)
Sud et al. [7] Fig. 13b 59 1.079
Ours Fig. 13e 53 0.958
Sud et al. [7] Fig.13c 91 1.519
Ours Fig. 13f 64 1.154
Sud et al. [7] Fig.13d 98 1.637
Ours Fig.13g 71 1.247

consists of an essential macroeconomic indicator reflecting
the changes in the price level of consumer goods and services
related to people’s life. We collect this detailed information
from the National Bureau of Statistics of China, specifically
for each province in the first quarter of each year from 2019
to 2022. These provinces are divided into six parts based
on their regional location, as shown in Sect.5.1. Figure 14
presents the visualization results of different methods on the
CPI dataset.

From the results in Fig. 13 and Fig. 14, we can observe
that our proposed method can effectively compute the visu-
alization layouts of dynamic hierarchical data. The previous
visualization layouts are fed as inputs to initialize the current
visualization layouts in the method proposed by Sud et al.
[7]. For simple dynamic hierarchical data (e.g., Fig. 13b), the
topology structures of visualization layouts can be preserved,
but it cannot be guaranteed for those complex dynamic
hierarchical data (e.g., Fig.13c, d), which may cause the
visualization results unclear and confusing. However, the
updating scheme projects those sites outside the visual-
ization region and their subsites into the corresponding

@ Springer

region (described in Sect.4.3.2). Consequently, the topol-
ogy of visualization layouts of two adjacent temporal data
sequences generated by PowerHierarchy can be guaran-
teed to preserve, as shown in Fig. 13e—g. Furthermore, the
computational time reported in Table3 indicates that the
computational efficiency of our proposed updating scheme is
similar to the method in [7] when visualizing simple dynamic
hierarchical data (e.g., only value changes), but it has bet-
ter performance in visualizing complex dynamic hierarchical
data (e.g., data structure changes).

6 Conclusion

In this paper, we propose an efficient and topology-preserved
visualization approach, called PowerHierarchy, for visual-
izing hierarchical data. An improved version of the power
diagram computing algorithm from [8] is presented to
achieve better efficiency and accuracy, which computes a
CVT after random initialization. Then it utilizes Newton’s
and L-BFGS methods to calculate the visualization layouts.
On this basis, an updating scheme is introduced, where the
previous results are fed as inputs to initialize current layouts.
Those external sites and their subsites are iteratively pro-
jected into the visual boundary and then moved into the visual
region. Experimental results on several datasets demonstrate
the effectiveness and accuracy of PowerHierarchy for visu-
alizing hierarchical data. Besides, the topological structures
of visualization layouts generated by the updating scheme
could be preserved during in-between frames.

Limitations and future work However, there is a com-
mon issue in the hierarchical data visualization technique
via Voronoi treemaps. Some irregular cells may appear in
the visualization layouts when the difference between two

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



PowerHierarchy: visualization approach of hierarchical...

nodes with the same parent is too large, as shown in Fig. 12
(the cell corresponds to the GDP of Australia). In addition,
our proposed visualization approach could be extended to
simple non-convex visualization region shapes (such as the
flower shape in Fig. 8a). Still, it is not suitable for these shapes
with more complex boundaries. In the future, we would like
to extend our work with other treemap techniques to improve
visualizing complex hierarchical data with complex bound-
aries.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-023-02864-
4.

Acknowledgements This study was supported in part by a grant from
the National Natural Science Foundation of China (61972128).

Data Availability Statement The datasets generated during and/or anal-
ysed during the current study are available from the corresponding
author on reasonable request.

Declarations

Conflict of interest The authors have no conflicts of interest/competing
interests to declare that are relevant to the content of this article.

References

1. Vernier, E.F.,, Telea, A.C., Comba, J.: Quantitative comparison
of dynamic treemaps for software evolution visualization. In:
2018 IEEE Working Conference on Software Visualization (VIS-
SOFT), pp. 96-106 (2018). https://doi.org/10.1109/vissoft.2018.
00018. IEEE

2. Vernier, E., Sondag, M., Comba, J., Speckmann, B., Telea, A.,
Verbeek, K.: Quantitative comparison of time-dependent treemaps.
Comput. Graph. Forum 39(3), 393-404 (2020). https://doi.org/10.
1111/cgf. 13989

3. Hahn, S., Triimper, J., Moritz, D., Déllner, J.: Visualization of
varying hierarchies by stable layout of voronoi treemaps. In: 2014
International Conference on Information Visualization Theory and
Applications (IVAPP), pp. 50-58 (2014). https://doi.org/10.5220/
0004686200500058. IEEE

4. Balzer, M., Deussen, O.: Voronoi treemaps. In: IEEE Symposium
on Information Visualization, 2005. INFOVIS 2005., pp. 49-56
(2005). https://doi.org/10.1109/INFVIS.2005.1532128. IEEE

5. Nocaj, A., Brandes, U.: Computing Voronoi treemaps: Faster, sim-
pler, and resolution-independent. Comput. Graph. Forum 31(3),
855-864 (2012)

6. Gotz, D.: Dynamic voronoi treemaps: a visualization technique
for time-varying hierarchical data. Phys. Rev. A 30(2), 150-156
(2011). https://doi.org/10.1109/TADVP.2007.896008

7. Sud, A., Fisher, D., Lee, H.-P.: Fast dynamic voronoi treemaps. In:
2010 International Symposium on Voronoi Diagrams in Science
and Engineering, pp. 85-94 (2010). https://doi.org/10.1109/isvd.
2010.16. IEEE

8. Xin, S.-Q., Lévy, B., Chen, Z., Chu, L., Yu, Y., Tu, C., Wang, W.:
Centroidal power diagrams with capacity constraints: computation,
applications, and extension. ACM Trans. Graph. (TOG) 35(6), 1-
12 (2016). https://doi.org/10.1145/2980179.2982428

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Scheibel, W., Trapp, M., Limberger, D., Dollner, J.: A taxonomy

of treemap visualization techniques. In: VISIGRAPP (3: IVAPP),
pp. 273-280 (2020). https://doi.org/10.5220/0009153902730280
Khalid, Z.M., Zeebaree, S.R.: Big data analysis for data visualiza-
tion: a review. Int. J. Sci. Bus. 5(2), 6475 (2021). https://doi.org/
10.5281/zenodo.4462042

Scheibel, W., Limberger, D., Déllner, J.: Survey of treemap layout
algorithms. In: Proceedings of the 13th International Symposium
on Visual Information Communication and Interaction, pp. 1-9
(2020). https://doi.org/10.1145/3430036.3430041

Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach
to the visualization of hierarchical information structures. Read.
Inf. Visualiz. Using Vision Think (1999). https://doi.org/10.1109/
visual.1991.175815

Knauthe, V., Ballweg, K., Wunderlich, M., Landesberger, T.,
Guthe, S.: Influence of container resolutions on the layout stability
of squarified and slice-and-dice treemaps. In: Eurographics/I[EEE
VGTC Conference on Visualization, pp. 97-101 (2020). https://
doi.org/10.2312/evs20201055

Ahmed, A.G.: Voronoi tree maps with circular boundaries. In:
Proceedings of the Conference on Computer Graphics & Visual
Computing, pp. 115-116 (2018). https://doi.org/10.2312/cgvc.
20181214

Yang, B., Cao, W.: The ordered treemap of weight divided lay-
out algorithm. J. Comput. 30(5), 31-45 (2019). https://doi.org/10.
3966/199115992019103005003

Chen, Y., Du, X., Yuan, X.: Ordered small multiple treemaps for
visualizing time-varying hierarchical pesticide residue data. Vis.
Comput. 33, 1073-1084 (2017). https://doi.org/10.1007/s00371-
017-1373-x

Gortler, J., Schulz, C., Weiskopf, D., Deussen, O.: Bubble
treemaps for uncertainty visualization. IEEE Trans. Visual Com-
put. Graph. 24(1), 719-728 (2017). https://doi.org/10.1109/tvcg.
2017.2743959

Wang, Y.-C., Xing, Y., Lin, F, Seah, H.-S., Zhang, J.: Ost: a
heuristic-based orthogonal partitioning algorithm for dynamic hier-
archical data visualization. J. Visual. (2022). https://doi.org/10.
1007/s12650-022-00830- 1

Sondag, M., Speckmann, B., Verbeek, K.: Stable treemaps via local
moves. IEEE Trans. Visual Comput. Graph. 24(1), 729-738 (2017).
https://doi.org/10.1109/tvcg.2017.2745140

Balzer, M.: Capacity-constrained voronoi diagrams in continuous
spaces. In: 2009 Sixth International Symposium on Voronoi Dia-
grams, pp. 79-88 (2009). https://doi.org/10.1109/ISVD.2009.28.
IEEE

De Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue
noise through optimal transport. ACM Trans. Graph. (TOG) 31(6),
1-11 (2012). https://doi.org/10.1145/2366145.2366190

Zheng, L., Yao, Y., Wu, W., Xu, B., Zhang, G.: A novel com-
putation method of hybrid capacity constrained centroidal power
diagram. Comput. Graph. 97, 108-116 (2021). https://doi.org/10.
1016/j.cag.2021.04.007

Zheng, L., Gui, Z., Cai, R., Fei, Y., Zhang, G., Xu, B.: GPU-based
efficient computation of power diagram. Comput. Graph. 80, 29-36
(2019). https://doi.org/10.1016/j.cag.2019.03.011

Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessella-
tions: applications and algorithms. SIAM Rev. 41(4), 637-676
(1999). https://doi.org/10.1137/S0036144599352836
Aurenhammer, F.: Power diagrams: properties, algorithms and
applications. SIAM J. Comput. 16(1), 78-96 (1987). https://doi.
org/10.1137/0216006

Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type the-
orems and least-squares clustering. Algorithmica 20(1), 61-76
(1998). https://doi.org/10.1007/pl00009187

Liu, Y., Wang, W., Lévy, B., Sun, F,, Yan, D.-M., Lu, L., Yang,
C.: On centroidal Voronoi tessellation-energy smoothness and

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Y.Yao et al.

fast computation. ACM Trans. Graph. (ToG) 28(4), 1-17 (2009).
https://doi.org/10.1145/1559755.1559758

28. Wang, Y.-C., Liu, J,, Lin, F,, Seah, H.-S.: Generating orthogonal
Voronoi treemap for visualization of hierarchical data. Com-
put. Graph. Int. Conf. (2020). https://doi.org/10.1007/978-3-030-

61864-3_33

29. Bernhardt, J., Funke, S., Hecker, M., Siebourg, J.: Visualizing gene
expression data via voronoi treemaps. In: 2009 Sixth International
Symposium on Voronoi Diagrams, pp. 233-241 (2009). https://doi.
org/10.1109/ISVD.2009.33. IEEE Computer Society

30. Li, B., Zhang, X.: Tree-coloring problems of bounded treewidth
graphs. J. Comb. Optim. 39(1), 156-169 (2020). https://doi.org/

10.1007/s10878-019-00461-7

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

Yuyou Yao received the bach-
elor’s degree in software engi-
neering from Hefei University of
Technology, Hefei, China, in 2018.
He is currently pursuing the Ph.D.
degree in software engineering
with School of Computer Science
and Information Engineering,
Hefei University of Technology,
Hefei, China. His research inter-
ests include computer graphics,
visualization and geometric pro-
cessing.

Tao Li received the bachelor’s
degree in computer science from
Huaibei  Normal  University,
Huaibei, China, in 2020. He is
currently pursuing the master’s
degree in computer science with
School of Computer Science and
Information Engineering,
Hefei University of Technology,
Hefei, China. His research inter-
ests include computer graphics and
image processing.

Wenming Wu received the bach-
elor’s degree in statistical math-
ematics from Anhui University,
Hefei, China, in 2015, and the
Ph.D. degree in computational
mathematics from University of
Science and Technology of China,
Hefei, China, in 2020. He is cur-
rently a lecturer in the School of
Computer Science and Informa-
tion Engineering, Hefei Univer-
sity of Technology, Hefei, China.
His research interests include com-
puter graphics and computer vision.

Gaofeng Zhang  received the
bachelor’s and master’s degrees in
computer science from Hefei Uni-
versity in 2005 and 2008, respec-
tively, and the Ph.D. degree from
Swinburne University of Technol-
ogy, Australia, in 2013. He is cur-
rently an assistant professor with
the School of Software, Hefei Uni-
versity of Technology. His research
interests include computer graph-
ics, service computing and soft-
ware security.

Liping Zheng received the bach-
elor’s and Ph.D. degrees in com-
puter science from Hefei Univer-
sity of Technology, Hefei, China,
in 2004 and 2008, respectively.
He is currently a professor with
the School of Computer Science
and Information Engineering,
Hefei University of Technology.
His research interests include com-
puter graphics, visualization and
computer simulation.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature™).

Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.

These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.

We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.

While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

1. use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access
control;

2. use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is
otherwise unlawful;

3. falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in
writing;

4. use bots or other automated methods to access the content or redirect messages

5. override any security feature or exclusionary protocol; or

6. share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal
content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.

These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.

To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.

Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.

If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice(@springernature.com



mailto:onlineservice@springernature.com

