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Abstract. Automatic generation of commercial floorplans can signifi-
cantly improve spatial design efficiency and customer experiences. Tra-
ditional manual methods are labor-intensive, costly, and prone to incon-
sistency. While deep learning methods have shown promise, their applica-
tion to commercial scenarios faces challenges, including limited datasets
and insufficient controllability. To address these issues, we introduce a
diffusion-based generative framework tailored specifically for commercial
floorplan synthesis. We first create a synthetic dataset of diverse commer-
cial floorplans using traditional geometric approaches. Then, leveraging
a diffusion-based architecture, our method generates high-quality, realis-
tic commercial floorplans. A subsequent vectorization step converts gen-
erated images into practical vector formats. Additionally, our approach
supports practical constraints such as boundary masks, path constraints,
and bubble diagrams, enabling precise and flexible control. Experiments
demonstrate that our method outperforms existing generative models
quantitatively and qualitatively. Our work represents a pioneering effort
in applying diffusion-based generative methods to commercial floorplan
design, providing a flexible and efficient solution for spatial designers.

Keywords: Commercial floorplan · Diffusion model · Constrained gen-
eration.

1 Introduction

Layout design plays a crucial role across various domains in modern society, par-
ticularly in architecture, urban planning, interior design, and industrial produc-
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Fig. 1. Overview of the proposed diffusion-based framework. The framework synthe-
sizes commercial floorplans by progressively denoising random noise through a diffusion
process over multiple timesteps. Distinct colors represent different functional zones. The
final pixel-level layout is subsequently converted into a vectorized representation.

tion. Based on the scale, layout generation tasks can be categorized into small-
scale [25,24,32], mid-scale [1,17,35], and large-scale scenarios [28,26,2]. Mid-scale
layouts encompass settings such as shopping malls, supermarkets, and hospitals,
among others. For the mid-scale commercial environment, efficient spatial layout
design has become core to enhancing scenario value, with its importance span-
ning scenarios such as shopping centers, supermarkets, and public service spaces.
Therefore, the automatic generation of commercial floorplans holds significant
practical and economic value.

Traditional commercial floorplan design, reliant on manual labor, is time-
consuming, costly, and prone to inconsistent quality outcomes due to subjective
interpretations and variations in experience among designers. Although some
computational optimization-based automatic methods [36,7,40,5] have been in-
troduced to address these issues, they often suffer from complex procedures,
limited automation, and poor generality across different commercial scenarios,
restricting their practical usability and application scope. Recent advances in
deep learning have drastically transformed multiple fields, including residential
building floorplan design [37,15,33,14], and urban planning [11,29,38]. Deep gen-
erative models [10,13] have demonstrated remarkable capabilities in automating
complex spatial design tasks. By learning optimal patterns from large datasets,
these models can efficiently generate high-quality layouts automatically, signifi-
cantly reducing manual effort and improving consistency. Despite these potential
advantages, applying deep learning methods to commercial floorplan design still
faces challenges. First, there remains a lack of publicly available datasets specifi-
cally tailored for commercial environments, severely limiting model training and
generalization capabilities. Second, existing deep learning methods developed for
residential or urban environments often fail to effectively capture the unique spa-
tial partitioning and functional requirements of commercial floorplans. Finally,
commercial design tasks often require strong controllability to meet specific prac-
tical constraints and user intents common in design projects.

In this paper, we propose a novel framework (Fig. 1) that leverages state-
of-the-art diffusion models [13] to automatically synthesize high-quality com-
mercial floorplans, integrated with robust controllability and practical usability.
Specifically, [35] is leveraged to synthesize large-scale, structured layout datasets.
Subsequently, we employ a diffusion-based generative framework designed ex-
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plicitly for high-resolution image synthesis, effectively capturing the complex
spatial structures inherent in commercial floorplans. Generated pixel-based lay-
outs are further converted into high-quality vector representations through a
vectorization post-processing step. Additionally, our proposed model explicitly
incorporates multiple practical constraints, such as boundary masks, path con-
straints, and bubble diagram constraints, allowing users to precisely control and
customize generated floorplans according to specific functional and commercial
requirements. This paper presents the first systematic and implemented deep
learning-based approach specifically designed for commercial floorplan genera-
tion, utilizing a synthetic dataset of commercial layouts. Our method not only
fills a critical research gap in this domain but also establishes a foundational
framework for applying deep learning to automated spatial design in commer-
cial environments. This pioneering work marks a significant step forward for
the field. We incorporate spatially detailed constraints, enabling precise zoning
and circulation control. Our method demonstrates strong constraint adherence,
outperforming general approaches. These are not reused designs but targeted
adaptations for real-world scenarios. Our contributions are twofold:

– We introduce a diffusion-based generative framework tailored for commer-
cial floorplan synthesis. Trained on structured synthetic datasets, the model
effectively captures complex spatial semantics and structures.

– We incorporate multiple design constraints—such as spatial boundaries, pedes-
trian flow paths, and functional zoning diagrams—into the generative pipeline,
achieving high controllability and adaptability.

2 Related work

2.1 Commercial floorplan generation

Commercial floorplan generation involves not only the functional zoning of spaces
but also the geometric arrangement of architectural units. Due to the lack of pub-
licly available datasets, most existing approaches rely on traditional rule-based
or optimization-based methods. Wu et al. [36] formulates the layout generation
task as a Mixed-Integer Quadratic Programming (MIQP) problem and proposes
a hierarchical framework for generating interior layouts, applicable to scenar-
ios such as shopping malls and office buildings. However, the method requires
numerous manually designed parameters, limiting its scalability and generaliza-
tion to more complex layouts. To incorporate human behavioral factors, Feng et
al. [7] integrates crowd simulation into the layout synthesis process, generating
crowd-aware commercial floorplans. Similarly, Zhang et al. [40] introduces a pa-
rameterized method that follows commercial floorplan design principles by orga-
nizing object groupings into configurable patterns. Additionally, Hua et al. [17],
though originally targeting urban-scale layouts, propose an integer programming
model that can be adapted to commercial environments such as shopping cen-
ters by adjusting configuration parameters. Overall, existing commercial floor-
plan generation methods rely on manual rules and heuristic strategies, lacking
generalizability and data-driven flexibility for complex environments.
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Fig. 2. Our dataset. (a) Statistics on the occurrence of region number per layout (a1),
each unit type (a2), and the number of layouts according to the total area (a3). (b)
Example from our synthetic dataset of a commercial floorplan. (c) Each sample includes
four constraint images.

2.2 Diffusion models for layout generation

There are many generative models in deep learning methods [19,4,13], among
which diffusion models have emerged as powerful generative frameworks in var-
ious fields. VQGAN [4] combines the efficiency of convolutional neural networks
with the expressiveness of transformer architectures by learning a discrete code-
book of visual tokens. It enables high-resolution image synthesis through strong
compression while preserving perceptual quality. Since the introduction of De-
noising Diffusion Probabilistic Models (DDPM) by [13], diffusion-based meth-
ods have achieved state-of-the-art results in tasks such as text-to-image gen-
eration [39], image restoration [9], and residential floorplan synthesis [31,41].
[18] further explored layout-to-image synthesis using diffusion. The Transformer-
based Diffusion architecture (DiT) proposed by [27] significantly enhanced image
generation performance and was later extended to other domains, including im-
age editing [6] and human motion generation [8], demonstrating the model’s
broad applicability. Diffusion models are also applied to the generation of resi-
dential floor plans [31,14,16]. To the best of our knowledge, no prior work has
explored deep generative frameworks tailored specifically for commercial floor-
plan design. Our work is the first to address this gap, introducing a structure-
aware, constraint-driven diffusion model for generating realistic and controllable
commercial floorplans.

3 Method

3.1 Representation

A commercial floorplan can be formally represented as a set of regions, denoted
as G = {Ri}, where each region Ri = {Pi, t} consists of a polygonal shape
Pi = {vi} and a functional type label t. The polygon Pi is defined by a set of
vertices {vi}, and the label t specifies the functional category of the region, such
as retail, storage, or service, which is typically visualized using distinct colors
in the floorplan. All regions are non-overlapping and collectively describe the
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occupied functional space within the floorplan boundary. The remaining areas
within the boundary that are not occupied by any defined region are considered
unassigned or unoccupied and are treated as passable path spaces, facilitating
movement and circulation throughout the environment.

3.2 Dataset

To support our research on commercial floorplan generation, we construct a syn-
thetic dataset tailored to this domain. Due to the lack of publicly available com-
mercial floorplan datasets, we build upon the RPLAN dataset [37] by extracting
polygonal spatial boundaries. To simulate realistic commercial layouts with ir-
regular shapes, we remove selected vertices to introduce non-rectilinear contours.
We then apply CVTLayout [35] to generate diverse and semantically meaningful
commercial floorplans based on these modified boundaries. This pipeline yields
4,000 synthetic commercial floorplans. As shown in Fig. 2(a), each sample in-
cludes five components (Fig. 2(b-c)):

– Layout image: RGB image (256×256) showing the full layout with color-
coded functional zones.

– Boundary mask: Binary mask indicating spatial boundaries.
– Path mask (Primary): Binary mask showing main navigable paths.
– Path mask (Full): Binary mask showing all passable areas.
– Bubble diagram: RGB image (256×256) showing high-level functional zon-

ing and adjacency.

Although synthetic data differs from real-world data, it is meticulously de-
signed to capture the structural and functional characteristics of commercial lay-
outs. This design ensures both its representativeness and generalizability, making
it a reliable proxy for training and evaluation purposes. We define five representa-
tive commercial functional categories: Fashion, Electronics, Restaurant, Leisure,
and Service. These categories are deliberately chosen to align with typical com-
mercial configurations and consumer behavior patterns, thereby enhancing the
dataset’s practical relevance and applicability. Note that our framework is not
limited to these and is easily extensible.

3.3 Network architecture

LayoutVAE To reduce computational complexity and facilitate effective gener-
ative modeling, we first train a Variational Autoencoder (VAE), named Layout-
VAE, to compress high-dimensional input floorplan images into low-dimensional
latent representations. Specifically, we employ an AutoencoderKL [22] framework
as our backbone, consisting of an encoder and a decoder. The parameters of the
pre-trained LayoutVAE model will be frozen during the subsequent training pro-
cess of the diffusion model. We follow standard VAE training using pixel-wise
MSE and KL divergence to learn compact latent vectors.
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Fig. 3. The pipeline of our diffusion-based generative model. The layout image and
the conditional image are taken as inputs. The layout image is first encoded into the
latent space by the encoder and then noised. For the conditional image, on one hand,
its features are extracted by an image encoder, combined with the timestamp, and
fed into the DiT-block; on the other hand, it is also encoded into the latent space by
the encoder to align with the layout image’s latent space. Subsequently, the conditional
image’s latent features are concatenated with the noisy layout latent features along the
channel dimension. Following DiT [27], we divide images into 16×16 patches, embed
them as tokens, and input them into the Transformer. Then, they are fed into the
DiT-block, and finally, the output of the model is reconstructed into a floorplan.

Diffusion framework Fig. 3 illustrates the basic model framework during train-
ing. This framework uses the DiT model [27] as its backbone, modeling the
diffusion process as a Markov chain. In the training process, we take a floorplan
image x as input, which contains the image layout information of interest. We
then compress the layout image x into the latent space through a pretrained Lay-
outVAE encoder to obtain its latent representation z. Next, we randomly sample
noise from a standard normal distribution, determine the maximum timestep T ,
and select a positive integer t from [0, T ] as the timestep, computing the noisy
layout feature map zt at this timestep.

The model can accept images such as boundaries, paths, and bubble diagrams
as conditions c. These conditional images have the same shape as the layout
plan and provide additional information to help the model generate images that
better meet requirements. The DiT framework fuses features of the conditions
through implicit encoding. Considering the feature extraction needs of condi-
tional images, we use ResNet-18 as the Conditional Image Embedder, which
effectively extracts the features of the conditional images. ResNet-18 extracts
features from resized 256×256 constraint images, producing (64, 32, 32) feature
maps. For timestep embedding, it is encoded by an MLP and concatenated with
constraint features along the channel dimension before entering the DiT-block
module. Constraint images are encoded into the latent space using LayoutVAE,
then concatenated with the layout latent to ensure consistency. This combina-
tion allows the model to consider both temporal and conditional information,
enhancing its representational capability. During the generation of layout plans,
constraints from image conditions focus more on local features. To better uti-
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(a) (b) (c)

Fig. 4. Illustration of the vectorization post-processing pipeline. (a) Mask extraction
and morphological processing; (b) Contour detection and semantic classification; (c)
Polygon approximation and simplification.

lize these local features, we adopt channel-wise concatenation to enhance the
model’s perception of local information, as described in [20,34]. Specifically, we
align the image conditions with the latent space of zt through the LayoutVAE
encoder to obtain cz. We then combine the condition cz with the layout’s latent
representation zt via channel-wise concatenation, which allows the model to in-
tegrate more information across channels and enrich the feature representation.
Assuming zt = (C1, H,W ) and cz = (C2, H,W ), where C1, C2 represents the
number of channels, H represents the height, and W represents the width. the
combined zt can be expressed as

zt = (C1 + C2, H,W ) (1)

Subsequently, we feed it into the DiT-block module. The module captures in-
formation through a multi-head self-attention mechanism, ultimately producing
the prediction result ẑ. Finally, the model’s output ẑ is reconstructed from the
latent space into a floorplan through the LayoutVAE decoder. To measure the
difference between the model’s prediction and the ground truth, we use mean
squared error (MSE) as the loss function, which effectively guides model training
and optimizes the model to minimize prediction errors.

3.4 Vectorization

We convert raster floorplans generated by our diffusion model into scalable vector
formats via a three-step pipeline (Fig. 4):

– Mask extraction and morphological processing. Extract binary masks
from the raster image to delineate spatial boundaries. Apply morphological
operations (erosion, dilation, opening, closing) to remove generation artifacts
and noise.

– Contour detection and semantic classification. Detect closed contours
and their hierarchical relationships. Classify contours via color analysis, map-
ping dominant colors to semantic labels using a predefined lookup table.

– Polygon approximation and simplification. Approximate contours us-
ing the Douglas-Peucker [3] algorithm and alignment techniques to generate
clean, editable vector representations suitable for architectural design work-
flows.
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Fig. 5. Examples of constrained layout generation.

3.5 Constrained generation

To meet diverse requirements in real-world commercial scenarios, we incorporate
multiple forms of image-based constraints, including boundary masks, primary
path masks, full path masks, and bubble diagram constraints. These constraints
enable precise control over the generated layouts, significantly enhancing their
practical applicability. Fig. 5 demonstrates the results generated by our method
under different constraints. We use constraints to improve control and functional
layout. Unconditional generation often lacks structural guidance, resulting in
overlaps or poor flow, which limits its applicability. Our results show that con-
straints significantly enhance structural integrity and layout quality. Our frame-
work supports basic interactive design by allowing users to modify constraints
like boundaries or bubble diagrams to control layout generation. For conflicting
constraints, we plan to use a constraint validation or prioritization mechanism
(e.g., giving boundary constraints higher priority).

4 Experiment

Our proposed model is implemented based on PyTorch and optimized using the
Adam optimizer [21]. The model is trained and tested on an NVIDIA GeForce
RTX 3090. To standardize the evaluation criteria, we divide the dataset into a
training set containing 3,000 samples and a test set containing 1,000 samples,
and extract layouts and their corresponding constraints from the test set. For
each constraint, we generate 5 commercial floorplans, resulting in a total of
5,000 floorplans for quantitative analysis. To accelerate image generation, we
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Table 1. Quantitative analysis of constrained generation.

Constraint Method Constraint FID ↓ Precision ↑ Recall ↑

Non-Concat Boundary 53.949 0.698 0.604
Channel-Concat Boundary 10.525 0.8226 0.847

Non-Concat Path (Primary) 32.609 0.691 0.803
Channel-Concat Path (Primary) 7.009 0.942 0.938

Non-Concat Path (Full) 11.586 0.863 0.884
Channel-Concat Path (Full) 5.633 0.996 0.998

Non-Concat Function 7.695 0.807 0.800
Channel-Concat Function 12.304 0.868 0.803

use T = 250 as the time steps for model inference in the experiments. For
our method, floorplan generation takes approximately 2.8 seconds, followed by
around 1 second for the vectorization process. This is significantly faster than
CVTLayout [35], which requires about 20 seconds to generate a single layout. In
terms of model size, LayoutVAE contains about 1.6 million parameters, whereas
DiT has around 140 million parameters.

We conduct a quantitative evaluation of the generated results using several
widely used metrics in generative tasks: FID (Fréchet Inception Distance) [12],
Precision and Recall [23]. FID is primarily used to calculate the feature vectors
of generated image data and real image data. A lower score means the generated
results are closer to real images. Precision represents the proportion of generated
images that belong to the real distribution. A higher value means the details
and structure of generated images are closer to real images, with higher quality.
Recall reflects the proportion of the real image distribution covered by generated
images. A higher value indicates that generated images cover more categories or
styles of real data, showing stronger diversity.

4.1 Ablation studies

In the DiT model, it extracts input condition features and fuses constraint in-
formation using an attention mechanism. We refer to the approach as Non-
Concat. We adopt Channel-Concat to enhance the model’s perception of
local conditional information, combining constraint information as additional
channels with the original input. Therefore, we analyze and evaluate Non-Concat
and Channel-Concat with different constraints. The latter improves generation
quality and better satisfies spatial constraints, validating the core innovation.

Table 1 shows the results evaluated using multiple metrics. Layouts generated
with constraints improve model performance to a certain extent, with different
combinations of constraints and methods producing differentiated effects. In-
troducing constraints enhances the generated samples’ performance across all
metrics, indicating that constrained generation improves distribution matching,
fidelity, and diversity to varying degrees. The model’s performance improves as
constraints become finer, achieving the best results when using the full path
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Fig. 6. Ablation analysis of constrained generation.

constraint for generation. Channel concatenation explicitly increases the input
dimensions, transforming constraints into spatial features directly computable
by the model. This enhances the model’s perception of local features and reduces
potential attenuation or ambiguity of constraint signals during feature fusion in
Non-Concat. When generating with boundary constraint, path constraint (pri-
mary), and path constraint (full), Channel-Concat outperforms in all metrics.
For generations with function constraints, while Channel-Concat slightly lags in
FID, it achieves better performance in Precision, Recall. Overall, considering all
quantitative metrics, Channel-Concat is more suitable for constrained generation
in this work compared to Non-Concat.

Fig. 6 demonstrates the results generated by different constraint methods and
conditions. For strong constraints like boundary constraints, Non-Concat cannot
strictly adhere to the input constraints. Taking the boundary constraint as an
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Table 2. Quantitative comparisons with baseline generative models.

Method Constraint FID ↓ Precision ↑ Recall ↑

VQGAN [4] Unconstraint 139.196 0.003 0.038
Ours Unconstraint 17.876 0.676 0.689

Pix2Pix [19] Function 128.737 0.047 0.070
LDM [30] Function 14.843 0.875 0.666

Ours Function 12.304 0.868 0.803

LDM LayoutDiT（Function Constrained）Pix2Pix

VQ-GAN LayoutDiT（Unconstrained）

Fig. 7. Comparison of floorplans generated by different methods.

example, although the results generated by Non-Concat are similar in shape to
the input boundary mask, they are not completely consistent, whereas Channel-
Concat results exactly match the boundary shape. Taken together, Channel-
Concat outperforms Non-Concat and is more conducive to precise layout control.

4.2 Comparision

Our work introduces the first deep learning framework specifically for commercial
floorplan synthesis, addressing a largely unexplored area. Due to the lack of
dedicated work, we evaluate our method by comparing it with representative
GAN, autoregressive, and diffusion models for image generation, as well as the
recent CVTLayout [35]. In this section, we conduct a comparative analysis of our
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method with commonly used generative methods such as Pix2Pix [19], VQGAN
[4], and LDM [30]. For constrained generation, we adopt the function constraint
as a representative case for evaluation.

As shown in Fig. 7, in the unconstrained case, VQGAN produces blurred and
grainy structure division within the regions and fails to construct clear shape
and structural features. In contrast, our method achieves a clearer division in
detail. As shown in Table 2, VQGAN performs poorly on core metrics such as
FID. The high FID value reflects a significant difference between the generated
samples and the real distribution, and there are also deficiencies in the qual-
ity and diversity of the generated samples. When generating with a function
constraint, the results generated by Pix2Pix do not capture the features of the
layout regions well in terms of shape and perform poorly on all metrics. LDM,
with its latent space diffusion mechanism, outperforms the earlier methods on all
metrics. Both LDM and our approach yield high-quality generated results. LDM
stands out in the Precision metric, indicating a strong ability to follow function
constraints, but its low Recall value suggests that there is still room for improve-
ment in the diversity of the generated samples. Our method achieves the best
results on most metrics. Although it is slightly inferior to LDM in the Precision
metric, it achieves a better balance between distribution matching, generation
quality, and diversity. Overall, the targeted design of our method enables it to
demonstrate superior comprehensive performance in the commercial floorplan
generation task, especially in the generation with constraint conditions.

Comparison with CVTLayout We further compare our method with the results
generated by CVTLayout [35], a representative traditional optimization-based
approach. CVTLayout requires a fixed clipping process during path generation,
so the paths generated by this method have certain limitations. Especially in
cases of extreme or narrow spatial conditions, it may lead to overly small regions
or narrow shapes in the layout, as shown in the area marked by the red border in
Fig. 8(a). In contrast, the diffusion-based generative model demonstrates greater
flexibility and can effectively handle irregular and challenging spatial constraints.
Our generation time (3.8s) is much faster than CVTLayout (20s), and Fig. 8
shows our model’s robustness under irregular boundaries, showing its ability
to handle extreme constraints. Unlike CVTLayout, our method also supports
bubble diagram constraints, showing stronger controllability.

5 Conclusion

This paper proposes a diffusion-based framework for generating commercial
floorplans. We create a synthetic dataset to train and evaluate the model, lever-
aging diffusion models’ generative power to produce high-quality, high-resolution
layouts. Our method incorporates practical constraints (boundaries, paths, and
functional requirements) to enable precise control over generation, thereby en-
hancing flexibility in design. Our model has several limitations. It struggles with
complex or conflicting constraints such as irregular boundaries, and currently
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(b) Ours

(a) CVTLayout

Fig. 8. Comparison between our diffusion-based method and CVTLayout.

supports only polygon-based layouts rather than curved or free-form shapes.
Since real-world datasets are unavailable, we rely on synthetic data that, while
capturing spatial logic and customer flow, simplifies complex layouts and omits
practical factors such as fire safety and utilities. Moreover, business logic and
user behavior are beyond our scope: we only simulate customer flow through
path constraints without modeling aspects like dwell time or visibility. There
are still many areas worthy of exploration and improvement in future research.
The framework is modular and extensible, offering a plug-and-play solution for
multimodal generation. With additional components (e.g., vision–language en-
coders), it can seamlessly support diverse modalities such as text and speech.
We can develop cross-modal constraint inputs for fine-grained generation control.
Additionally, we can integrate user feedback into an interactive design framework
that dynamically aligns outputs with practical needs, improving applicability.
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