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Recently, 3D Gaussian Splatting (3DGS) has significantly advanced the development of 3D 
reconstruction by providing efficient and high-quality rendering. 2D Gaussian Splatting (2DGS) 
introduced two-dimensional surfels as scene primitives to address 3DGS’s limitations in surface 
representation. However, its adaptive control strategy may still result in suboptimal results, 
especially when dealing with extreme-shaped or large Gaussians on the surface. We propose 
Elongation Splitting and Assimilation in Gaussian Splatting (ESA-GS) to enhance geometric 
reconstruction quality by addressing these special Gaussians. Specifically, ESA-GS splits highly 
elongated Gaussians on the surface into three assimilated Gaussians during the densification 
process. In addition, ESA-GS adds an opacity degeneration strategy and an additional pruning 
strategy to remove invalid Gaussians and improve the geometry quality. Experimental results 
demonstrate that ESA-GS can produce geometrically accurate reconstructed surfaces without 
sacrificing efficiency in most cases.

1. Introduction

Novel view synthesis (NVS) and accurate surface reconstruction have long been significant challenges in the fields of computer 
vision and graphics. Successful 3D reconstruction demands both high-quality novel-view rendering and accurate geometry. Neural 
Radiance Fields (NeRF) (Mildenhall et al., 2020) has made significant progress in this area through implicit radiance fields and 
differentiable rendering techniques. However, NeRF’s reliance on substantial computational resources limits rendering speed, thereby 
hindering its practical application in real-world scenarios.

Recently, 3D Gaussian splatting (3DGS) (Kerbl et al., 2023) has emerged as a promising alternative, providing an explicit rep-

resentation method that achieves real-time and high-quality rendering. This approach utilizes 3D Gaussians as primitives for scene 
representation combined with a tile-based splatting technique, rather than relying on expensive neural field queries. As a result, 3DGS 
meets the demands for both rendering quality and speed, making it suitable for practical applications in fields such as virtual reality, 
augmented reality, gaming, and interactive avatars.

Despite the great potential of 3DGS and its rapid advancement across various fields, such as anti-aliasing rendering (Yu et al., 
2023), few shot reconstruction (Li et al., 2024; Zhu et al., 2023), dynamic scene modeling (Wu et al., 2023), and animated avatar 
creation (Hu et al., 2023), it still faces challenges in geometric reconstruction. These challenges stem from the inherent discreteness 
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Fig. 1. ESA-GS exhibits better geometric details with fewer points. In the Ignatius scene, our method produces high-quality meshes and realistic images. (a) shows 
the mesh results, where our method effectively fills holes and smooths artifacts compared to 2DGS. (b) shows the normal map, render results and edge map. (c) 
illustrates the point cloud distribution, demonstrating our method achieves comparable reconstruction quality with fewer points than 2DGS.

of Gaussian primitives, which lack sufficient geometric support. While many existing 3DGS approaches focus primarily on rendering 
quality, the geometric accuracy of reconstructed surfaces has received relatively less attention.

It is worth noting the emergence of 2D Gaussian Splatting (2DGS) (Huang et al., 2024), which transforms three-dimensional 
Gaussian ellipsoids into two-dimensional disks for rendering. Additionally, it incorporates two regularization terms to better fit the 
2D primitives to surfaces, significantly improving geometric accuracy in surface reconstruction. However, 2DGS still has limitations in 
its densification strategy, as it is not optimized to handle extreme or redundant Gaussians, which can lead to inaccuracies in geometry 
reconstruction. On the other hand, AtomGS (Liu et al., 2024) improves geometric accuracy by atomizing Gaussians whose minor axes 
are smaller than a fixed size. However, AtomGS can be computationally expensive due to its simplistic approach and lacks effective 
strategies to address these challenges.

Therefore, we introduce ESA-GS, a novel method aimed at enhancing geometric accuracy through Elongation Splitting and Assim-

ilation (ESA), complemented by opacity degeneration and controlled pruning strategies. As illustrated in Fig. 1, ESA-GS significantly 
improves the quality of geometric reconstruction with fewer points.

Our proposed ESA-GS optimizes 2DGS by strategically assimilating specific Gaussians, ensuring that under-optimized Gaussians 
on the surface are properly addressed. ESA-GS offers precise guidance for handling overly elongated and narrow Gaussians, leading to 
improved geometric optimization. Specifically, during the densification process, overly elongated Gaussians on the surface are split 
into three assimilated Gaussians along the longest axis. After densification, any remaining narrow Gaussians are further assimilated 
into fixed-size Gaussians. Additionally, we introduce an opacity degeneration strategy and a novel pruning strategy to eliminate 
Gaussians that contribute little or could result in erroneous depth estimation. This leads to a lower storage costs and competitive 
geometric quality. In summary, our contributions are as follows:

• We introduce Elongation Splitting and Assimilation (ESA), which effectively addresses elongated Gaussians on the surface areas, 
leading to more accurate 3D geometric reconstruction quality.

• We design an opacity degeneration strategy and a novel pruning strategy that enhances reconstruction accuracy and simultane-

ously reduces storage costs by eliminating redundant Gaussians.

• Through both experimental and theoretical analysis, our proposed ESA-GS achieves superior performance across multiple bench-

mark datasets, delivering improved geometric accuracy with fewer Gaussians.

2. Related work

2.1. Novel view synthesis

Novel View Synthesis (NVS) aims to generate images from new viewpoints based on images captured from various source view-

points around a 3D scene. The effectiveness of rendering these new viewpoints depends largely on the accuracy of the underlying 
3D scene representation. Early methods (Lombardi et al., 2019; Sitzmann et al., 2018; Sun et al., 2021) often used volume-based 
approaches that discretized space into voxels to model internal structures in detail. However, these approaches were constrained 
by resolution limits and high computational costs. In contrast, implicit neural representations (Jiang et al., 2020; Ran et al., 2022) 
utilize continuous functions to model complex geometry and appearance, removing the need for spatial discretization and opening 
new possibilities for novel view synthesis.

NeRF (Mildenhall et al., 2020) has made groundbreaking contributions by employing a coordinate-based MLP to encode radiance, 
enabling unprecedented detail and realism in novel view synthesis. It excels at capturing complex light interactions and intricate 
surface details. Building on the original NeRF, Mip-NeRF (Barron et al., 2021) addresses common aliasing artifacts with the introduc-

tion of cone-based anti-aliased rendering. On the other hand, due to NeRF’s slow training speed, methods like InstantNGP (Müller 
et al., 2022) and Plenoxels (Yu et al., 2021) have emerged, accelerating training by utilizing simplified data structures like multi-
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resolution hash encoding grids and others, albeit with some trade-offs in quality. Although state-of-the-art NeRF-based methods can 
reconstruct unbounded scenes with high quality and render them at interactive rates, they still require substantial computational 
resources and prolonged training times. The introduction of 3DGS (Kerbl et al., 2023) marks a new phase in novel view synthesis. 
3DGS achieves superior rendering quality and real-time speeds, effectively addressing the training and rendering speed limitations 
of earlier NeRF-based approaches.

2.2. Surface reconstruction

The goal of surface reconstruction is to recover the surface of 3D objects from various forms of input data, with applications 
in fields such as virtual reality, augmented reality, and cultural heritage preservation. Many pioneering approaches rely on point 
clouds, voxels, triangular meshes, or implicit fields, using neural networks to predict surface models directly from one or more 
images in an end-to-end manner. NeRF (Mildenhall et al., 2020) opened new possibilities for surface reconstruction, inspiring a series 
of subsequent works. However, due to the lack of geometric constraints in implicit radiance fields and the inherent limitations of 
the MLP architecture, these methods often introduce artifacts and inaccuracies, preventing them from achieving the desired level of 
surface fidelity.

3DGS also faces challenges in extracting precise surfaces due to the discreteness and unstructured nature of 3D Gaussians. Many 
previous methods (Dai et al., 2024; Gu’edon and Lepetit, 2023; Turkulainen et al., 2024; Yu et al., 2024b; Chen et al., 2023) have fo-

cused on applying geometric regularization, which has proven effective. SuGaR (Gu’edon and Lepetit, 2023) employs signed distance 
functions (SDF) and density regularization to supervise Gaussian distributions, aligning them with object surfaces before extracting 
meshes through Poisson surface reconstruction (Kazhdan and Hoppe, 2013). AtomGS (Liu et al., 2024) improves geometric recon-

struction quality by atomizing irregularly shaped Gaussians into fixed-size Gaussians. GS2Mesh (Wolf et al., 2024) utilizes the view 
synthesis capabilities of 3D Gaussian Splatting (3DGS) to overcome the limitations of direct surface reconstruction based on Gaus-

sian positions, thereby enabling high-quality surface reconstruction. Meanwhile, 2DGS (Huang et al., 2024) compresses 3D Gaussian 
volumes into oriented 2D Gaussians, better fitting surfaces and avoiding ambiguous depth estimations. In addition to geometric 
regularization, 2DGS utilizes truncated signed distance function (TSDF) fusion and Marching Cubes (Lorensen and Cline, 1987) for 
mesh extraction, demonstrating good adaptability to outliers and noise. GaussianSurfels (Dai et al., 2024) adopts a similar approach, 
introducing several additional regularization terms. On the other hand, GOF (Yu et al., 2024b) tackles surface reconstruction from 
a different perspective by focusing on unbounded scenes. It establishes a Gaussian opacity field based on ray tracing and directly 
extracts geometric surfaces using SDF level sets, without relying on Poisson reconstruction or TSDF fusion as in SuGaR and 2DGS.

In this paper, our method not only focuses on regularization but also enhances the representation of detailed areas by addressing 
extreme Gaussians. This approach allows for the learning of Gaussians that align more accurately with the geometry. In addition, we 
incorporate auxiliary strategies to eliminate redundant and erroneous Gaussians.

2.3. Effective additional measures of 3D Gaussians

Despite the significant potential of 3DGS, there remains considerable room for optimization, particularly with respect to Gaussian 
artifacts and multi-resolution handling. Several works have improved reconstruction quality and robustness by improving Gaussian 
representations through techniques such as low-pass filtering (Yu et al., 2023), multi-scale Gaussian representations (Lu et al., 2023; 
Ren et al., 2024), and refined Gaussian kernel functions (Yu et al., 2024a). Other efforts have focused on optimizing the high storage 
costs associated with 3DGS, with approaches such as Papantonakis et al. (2024), LightGS (Fan et al., 2023), SpikingGS (Zhang et al., 
2024a), and TrimGS (Fan et al., 2024). Notably, TrimGS emphasizes improving geometric quality in reconstruction. Densification is 
another crucial aspect of 3DGS, and several works have optimized this component, Pixel-GS (Zhang et al., 2024b) primarily modify 
gradient calculations within the densification process, it introduces a gradient scaling strategy to suppress artifacts near the camera. 
Additionally, GS-LPM (Yang et al., 2024) addresses errors caused by insufficient densification in multi-view scene by incorporating 
novel solutions and periodically resetting Gaussians to mitigate occlusion issues. In this paper, we propose a novel method that 
modifies the densification strategy and combines it with an opacity degeneration strategy and a new pruning approach to achieve 
accurate surface reconstruction.

3. Preliminaries

3.1. 3D Gaussian splatting

3D Gaussian splatting (Kerbl et al., 2023) provides an explicit representation of 3D scenes, starting from a set of SfM(Structure 
from Motion) point clouds to derive a collection of anisotropic 3D Gaussians 

{
𝑖

}
. Each Gaussian is defined by its position 𝜇𝑖 ∈𝑅3, 

opacity 𝛼𝑖 ∈ [0,1], anisotropic covariance matrix Σ𝑖 ∈𝑅3×3, and view-dependent color represented by spherical harmonic coefficients. 
The covariance matrix can be decomposed into: Σ𝑖 =𝐑𝑖𝐒𝑖𝐒𝑇𝑖 𝐑

𝑇
𝑖

, where 𝐑𝑖 ∈𝑅3×3 denotes the rotation matrix and 𝐒𝑖 ∈𝑅3×1 denotes 
the scaling matrix. The 3D Gaussian primitives can be represented as follows (Kerbl et al., 2023):

𝑖(𝑥) = 𝑒
− 1

2 (𝑥−𝜇𝑖)
𝑇 Σ−1

𝑖
(𝑥−𝜇𝑖) (1)
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Fig. 2. The pipeline of the proposed ESA-GS. The three strategies (ESA, Opacity Degeneration and Prune) proposed in our work have been integrated into the 
adaptive density control process. Specifically, (a) Elongation Splitting and Assimilation is designed to address the challenges posed by irregular Gaussians. (b) Opacity 
Degeneration and Prune aim to eliminate redundant Gaussians, thereby improving reconstruction quality. Additionally, (c) demostrates the influence of varying split 
numbers 𝑠 on elongated Gaussians. The attributes of Gaussian are optimized through a combination of photometric loss 𝐿𝑝 , edge-aware depth distortion loss 𝐿𝑑 and 
normal consistency loss 𝐿𝑛 .

During the rendering process, each 3D Gaussian is projected into 2D screen space to obtain the corresponding 2D Gaussian 
projection. These projected 2D Gaussians are then assigned to different tiles, and a point-based alpha blending process is used to 
accumulate the color for each pixel. Assuming 𝑝 is the target pixel, its color can be expressed as (Kerbl et al., 2023):

 (𝑝) =
∑
𝑖∈𝑁

𝑐𝑖𝜎𝑖

𝑖−1 ∏
𝑗=1 

(1 − 𝜎𝑗 ), 𝜎𝑖 = 𝛼𝑖
′
𝑖(𝑝) (2)

where 𝑁 represents the set of Gaussians influencing pixel 𝑝, sorted in descending order by depth. 𝑐𝑖 denotes the color of the Gaussians, 
generated from the coefficients of the spherical harmonics and dependent on the viewing angle. The blending weight 𝜎𝑖 is determined 
by the corresponding 2D projection of the Gaussian ′

𝑖
and its opacity 𝛼𝑖.

3.2. 2D Gaussian splatting

2D Gaussian splatting (Huang et al., 2024) builds upon 3DGS by transforming the volume of 3D ellipsoids into a set of oriented 
2D Gaussian disks (referred to as surfaces) to address multi-view inconsistencies in 3DGS. It also introduces an improved method 
for computing ray-splat intersections, leading to more accurate depth estimations. The covariance of 2D Gaussians is described using 
two tangent vectors 𝑡𝑛,𝑢 and 𝑡𝑛,𝑣, along with a scaling vector 𝐒𝑛 = (𝑠𝑛,𝑢, 𝑠𝑛,𝑣). Additionally, 2DGS incorporates two new loss terms: 
a depth distortion term that helps align the Gaussians more closely along the rays, and a normal consistency term that aligns the 
surface normals with those estimated from the depth map. These measures significantly improve both geometric reconstruction and 
novel view synthesis capabilities.

4. Method

This section outlines the details of the proposed ESA-GS. In Sec 4.1, we introduce the Elongation Splitting and Assimilation (ESA) 
strategy to address extreme Gaussians on the surface, along with a depth-based stratification of the Gaussians. In Sec 4.2, we propose 
an opacity degeneration strategy to improve geometric reconstruction quality. In Sec 4.3, we present a new pruning strategy to 
eliminate redundant and erroneous Gaussians. Finally, we present the components of the training loss in Sec 4.4. The pipeline is 
shown in Fig. 2.

4.1. Elongation splitting and assimilation

Due to the intrinsic properties of Gaussians, the rendered depth map is computed using alpha blending and can be expressed as 
(Kerbl et al., 2023):

 (𝑝) =
∑
𝑖∈𝑁

𝑑𝑖𝜎𝑖

𝑖−1 ∏
𝑗=1 

(1 − 𝜎𝑗 ), (3)
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Fig. 3. Illustration of the Elongation Splitting and Assimilation. (a). The original depth alignment caused the elongated Gaussians to produce protrusions on the 
scene surface. (b). By splitting the elongated Gaussians near the surface into three assimilated Gaussians, the fit to the scene surface is improved. (For interpretation 
of the colors in the figure(3), the reader is referred to the web version of this article.)

where 𝑑𝑖 is the depth of the 𝑖-th Gaussian under the current camera view. However, directly using the center of the Gaussians as 
the depth leads to unaccurate depth maps when the Gaussians are very narrow or big. This limitation stems from the shape of the 
Gaussians, which introduces geometric errors. Even techniques like the ray-splat intersection used in 2DGS (Huang et al., 2024) do 
not completely eliminate these errors. As shown in Fig. 3(a), although the depths are aligned with the surface after optimization, 
there is still a noticeable shape deviation from the actual surface, particularly for excessively elongated Gaussians.

In this section, we introduce the Elongation Splitting and Assimilation (ESA) strategy to overcome the above limitations, as 
illustrated in Fig. 3(b). This method targets excessively elongated Gaussians on the surface, defined as those with a longest-to-smallest 
axis ratio exceeding a specified threshold. Rather than including these elongated Gaussians in the original densification process, ESA 
splits them into three smaller, assimilated Gaussians during densification. The Fig. 2(c) demonstrates the effects of varying split 
number 𝑠 on elongated Gaussians. It can be observed that when 𝑠 = 2, a portion of the original Gaussians’ geometric structure is lost. 
When 𝑠 = 3, the geometric structure of the original Gaussian is largely preserved, with only minor distortions at the edges. However, 
these edge distortions often introduce artifacts, such as burrs, that can compromise the quality of the reconstruction. When 𝑠 = 4, the 
geometric structure of the Gaussian is preserved, but the increased number of Gaussians may potentially tend to more overlapping 
regions. Furthermore, the edges of elongated Gaussians are more prone to incorrect retention, further degrading the reconstruction 
results. Crucially, the splitting direction follows the longest axis of the elongated Gaussian, thus preserving the original geometry 
as much as possible. After the densification process, the narrow Gaussians are assimilated to further enhance surface reconstruction 
accuracy.

Additionally, Gaussians should be allocated to different layers based on their depth information with each layer corresponding to 
a unique assimilation size. This approach accounts for the fact that Gaussians at different depth levels often require varying levels of 
detail. The total number of layers 𝐿𝑚𝑎𝑥 is calculated as follows:

𝐿𝑚𝑎𝑥 =𝑚𝑎𝑥(⌈log2(𝑑𝑚𝑎𝑥∕𝑑𝑚𝑖𝑛)⌉,3), (4)

where, 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 represent the farthest and closest distances from the SfM point cloud to each camera, respectively. For each 
viewpoint, the layer of a Gaussian is determined by its distance from the current camera, which falls into one of the intervals between 
𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛.

The initial assimilation size 𝑆𝑖𝑛𝑖𝑡 is determined based on the SfM point cloud. Specifically, we obtain 𝑆𝑖𝑛𝑖𝑡 by computing the 0.3
quantile of the size distribution of the initialized Gaussians. This size is optimal for capturing fine details and avoiding interference 
from background elements. For each subsequent layer, the assimilation size is halved relative to the previous layer, and as the process 
progresses, the assimilation sizes gradually decrease. This will help ensure a smoother transition between adjacent layers when the 
densification reaches the midpoint of the iterations (0.9970 ≈ 0.5), with subsequent iterations further refining the process. Once the 
densification process is complete, the assimilation sizes for each layer are fixed. Similar to AtomGS (Liu et al., 2024), we assimilate 
Gaussians with a minor axis smaller than the assimilation size (𝑆𝑚𝑖𝑛 < 𝑆𝑖𝑛𝑖𝑡) to form uniformly shaped Gaussians with a size set to 
𝑆𝑥 = 𝑆𝑦 = 𝑆𝑖𝑛𝑖𝑡. The key difference is that while AtomGS begins atomization at the beginning and applies it to all Gaussians, our 
post-assimilation strategy specifically targets narrow Gaussians near the surface, leading to more accurate reconstructions with fewer 
side effects.

4.2. Opacity degeneration strategy

Depth alignment has been shown to be effective for surface reconstruction in many works. However, since the rendered depth 
of Gaussians is obtained through alpha blending, it is influenced by several factors, including position, opacity, and size. Among 
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Fig. 4. Illustration of the Prune Strategy. 

these, certain Gaussians located at substantial distances from the surface tend to converge to suboptimal opacity values, which may 
adversely affect the overall reconstruction quality. Many methods address this by introducing opacity loss terms that push opacity 
towards 0 or 1. However, this approach may hinder optimization process or result in overfitting to the training views. To address this, 
we propose applying a degeneration coefficient 𝜆 to reduce the opacity of the Gaussians every certain number of iterations (𝛼′ = 𝜆𝛼). 
This enhances the reconstruction quality and avoids the risk of overfitting.

During training, Gaussians close to the surface are typically visible from multiple viewpoints, allowing their gradients to accumu-

late across these views, resulting in larger gradient values. This enables their opacity to be adjusted appropriately according to the 
optimization process. In contrast, Gaussians farther from the surface, especially floaters, receive weaker multi-view constraints and 
fail to accumulate sufficient gradients. As a result, their opacity may remain stuck in an incorrect range, which negatively affects the 
quality of the rendered output.

We aim to eliminate erroneous Gaussians that are far from the surface while retaining those closer to it. After the opacity degener-

ation process, the opacities of all Gaussians are reduced, effectively clearing the accumulated opacity gradients. This allows Gaussians 
near the surface to quickly accumulate sufficient gradients and remain align with the surface. In contrast, Gaussians farther from the 
surface fail to gather enough gradients to enhance their opacity. As a result, these distant Gaussians are progressively pruned. In 
summary, the opacity degeneration strategy significantly improves surface reconstruction quality by selectively retaining Gaussians 
near the surface and effectively removing anomalous Gaussians located at a distance.

4.3. Prune strategy

Inspired by TrimGS (Fan et al., 2024), we recognize that pruning certain Gaussians can significantly enhance the geometric quality 
of the reconstruction. However, the pruning strategy in TrimGS operates as a post-processing step, requiring a fully formed Gaussian 
model before any pruning can take place. This introduces additional time costs and limits flexibility. In contrast, our approach 
introduces a novel pruning criterion that is seamlessly integrated into the training process, avoiding the need for separate post-

processing or additional tuning operations. The overall importance score 𝐼 is calculated based on two key components: 𝐼 = 𝐼𝑔𝐼𝑖
(Fig. 4).

Based on Fan et al. (2024). The global importance 𝐼𝑔 can be expressed as:

𝐼𝑔 =
1 |𝑃𝑘|

∑
𝑝∈𝑃𝑘

(𝛼𝑛)𝛾
(

𝑛(𝑝)−1∏
𝑗=1 

(1 − 𝛼𝑗 )

)(1−𝛾)

(5)

where 𝑃𝑘 presents the 2D projected area of the 𝑛-th Gaussian in the 𝑘-th view, 𝑛(𝑝) denotes the sorted set of Gaussians along the ray, 
determined by alpha blending. Set 𝛾 to a default value of 0.5. The final global score is obtained by averaging the contributions from 
the top five views with the highest scores.

The individual importance 𝐼𝑖 is defined as:

𝐼𝑖 = (𝑉𝑛)𝛽 , 𝑉𝑛 =𝑚𝑖𝑛

(
𝑚𝑎𝑥

(
𝑉𝐺

𝑉𝐺90
,0
)
,1
)

(6)

where 𝑉𝐺 represents the volume of the corresponding Gaussian. Since our work builds upon 2DGS (Huang et al., 2024), the Gaussian 
volume can be expressed as 𝑉𝐺 = 𝑆𝑥𝑆𝑦. To ensure that the Gaussian volume remains within a reasonable range, it is normalized based 
on the 90% of volumes among all Gaussians (𝑉𝐺90), ensuring that the volume is constrained within the range (0, 1). This normalization 
helps prevent floating Gaussians or excessively large Gaussians from having disproportionately high importance scores. Additionally, 



Computer Aided Geometric Design 119 (2025) 102434

7

Y. Chen, W. Wu, Y. Peng et al. 

it ensures better alignment with the overall panorama of assimilated Gaussians, leading to a more balanced representation of their 
contributions to the scene.

4.4. Training loss

To guide the optimization of Gaussians, our total loss consists of three components, similar to 2DGS (Huang et al., 2024): pho-

tometric loss 𝐿𝑝, edge-aware depth distortion loss 𝐿𝑑 and normal consistency loss 𝐿𝑛. Therefore, the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 is expressed 
as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑝𝐿𝑝 + 𝜆𝑑𝐿𝑑 + 𝜆𝑛𝐿𝑛 (7)

Photometric Loss. The photometric loss 𝐿𝑝 is consistent with 3DGS (Kerbl et al., 2023). This loss aims to minimize the difference 
between the rendered image 𝐼 and the corresponding ground truth (GT) image 𝐼 , and is typically formulated as:

𝐿𝑝 = 0.8 ⋅𝐿1(𝐼, 𝐼) + 0.2 ⋅𝐿𝐷𝑆𝑆𝐼𝑀 (𝐼, 𝐼) (8)

Edge-aware Depth Distortion Loss. The original depth distortion loss in 2DGS aims to concentrate Gaussians along the ray. However, 
we observed that this approach could result in excessive smoothing in high-frequency regions, leading to a loss of sharp details in 
the reconstructed surface. To address this limitation, we introduced a new weight function 𝜔(|∇𝐼|) = 𝑒−∇𝐼 , which prioritizes regions 
with strong gradients (edges) and reduces the weight in flatter areas, effectively preserving high-frequency details. Consequently, the 
updated depth distortion term is formulated as:

𝐿𝑛 = 𝜔(|∇𝐼|)∑
𝑖,𝑗 

𝜔𝑖𝜔𝑗 |𝑧𝑖 − 𝑧𝑗 | (9)

where |∇𝐼| denotes edge map from GT image, 𝑤 denotes the blending weight, 𝑧 is the intersection depth.

Normal Consistency Loss. We also adopt the normal consistency loss 𝐿𝑛 from 2DGS to help align the rendered normals with those 
derived from the depth map:

𝐿𝑑 =
∑
𝑖 
𝜔𝑖(1 − 𝑛𝑇𝑖 𝑁) (10)

where 𝑛𝑖 denotes the normal of the splat, and 𝑁 represents the normal estimated from the gradient of the depth map.

5. Experiment

5.1. Evaluation metrics and datasets

We conduct experiments on three widely used public datasets: the DTU dataset (Aanæs et al., 2016), the Tanks and Temples 
(TnT) dataset (Knapitsch et al., 2017), and the MipNeRF360 dataset (Barron et al., 2021). The first two datasets are used to assess 
the quality of surface reconstruction. Following previous work (Huang et al., 2024), we select 15 scenes from the DTU dataset and 
6 scenes from the TnT dataset for evaluation, using the Chamfer Distance (CD) and F1 score as evaluation metrics respectively. We 
also report training time to evaluate the efficiency of our method. The MipNeRF360 dataset is primarily used to evaluate novel view 
synthesis performance, with PSNR, SSIM (Wang et al., 2004) and LPIPS (Zhang et al., 2018) as evaluation metric. Using the camera 
poses provided by these datasets, we employ COLMAP to generate sparse point clouds for each scene as the initialization step. This 
experimental setup enables a thorough evaluation of effectiveness across various tasks and datasets.

5.2. Implementation details

We build our method upon the public code of 2DGS (Huang et al., 2024). We adopt the training strategies, hyperparameter 
settings, and evaluation scripts from 2DGS, with all scenes trained for 30,000 iterations. In addition, we use the densification method 
and appearance model proposed by GOF (Yu et al., 2024b). The Elongation Splitting and Assimilation (ESA) process begins after 
1,000 iterations and is performed every 100 iterations thereafter. Opacity degeneration is applied every 500 iterations during the 
densification process. The assimilation step is applied every 1,000 iterations after densification, and the pruning strategy is executed 
three times during training. All experiments are conducted on a single NVIDIA RTX 4090 GPU.

We select several state-of-the-art methods for surface reconstruction based on NeRF and 3DGS for comparison. The implicit NeRF-

based methods include VolSDF (Yariv et al., 2021), NeuS (Wang et al., 2021) and Neuralangelo (Li et al., 2023). The 3DGS-based 
methods are 3DGS (Kerbl et al., 2023), SuGaR (Gu’edon and Lepetit, 2023), G-Surfels (Dai et al., 2024), 2DGS (Huang et al., 2024), 
GOF (Yu et al., 2024b), TrimGS (Fan et al., 2024) and GS2Mesh (Wolf et al., 2024).

5.3. Comparisons

For the DTU dataset, our method achieves superior geometric reconstruction accuracy without incurring additional time costs as 
shown in Table 1. Fig. 5 presents a qualitative comparison of meshes using G-Surfel (Dai et al., 2024), 2DGS (Huang et al., 2024), 
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Fig. 5. Comparison of surface reconstruction methods on the DTU Dataset. We show the Chamfer Distance in the bottom right corner of the image. 

Fig. 6. Quantitative results of rendering quality on the MipNeRF360 Dataset. Notably, the number of Gaussians used in our method is significantly reduced 
compared to 2DGS. At the same time, we achieved an improvement in rendering quality in certain areas.

GOF (Yu et al., 2024b), and our method on DTU scenes 65, 97, and 118. Our method achieves superior performance, demonstrating 
both stability and accuracy in surface reconstruction. In contrast, other methods show inconsistencies that result in inaccuracies in 
the reconstructed surfaces. These results underscore the effectiveness of our method in producing reliable, high-quality geometric 
representations.

To evaluate the performance of novel view synthesis, our method demonstrates rendering performance comparable to 2DGS 
(Huang et al., 2024) with fewer Gaussian points, and it outperforms other methods, as shown in Table 2. The visual results in 
Fig. 6 further illustrate that our method improves rendering quality in certain scenes and maintains a competitive training time. This 
indicates our method balances reconstruction accuracy, training efficiency, and storage efficiency.

For the TnT dataset, our method achieves an F1 score comparable to that of GOF (Yu et al., 2024b) as shown in Table 3, positioning 
it among the top-performing approaches. Additionally, the computational time is similar to that of 2DGS. As illustrated in Fig. 7, our 
method illustrates better geometric consistency than 2DGS, demonstrating its effectiveness in maintaining high-quality reconstructions 
and optimizing processing time.
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Table 1
Quantitative Comparison on 15 scenes from DTU dataset. We report the Chamfer Distance (CD) and average training time. * means our re-implementation. , 

, indicate the best, the second best, and the third best respectively. (For interpretation of the references to color please refer to the web version of this article.)

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 MeanCD Time 
VolSDF 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86 >12  h 
NeuS 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84 >12  h 
Neuralangelo 0.37 0.72 0.35 0.35 0.87 0.54 0.53 1.29 0.97 0.73 0.47 0.74 0.32 0.41 0.43 0.61 >12  h 
3DGS 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50 1.96 11.2  m 
SuGaR 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33 1  h 
2DGS* 0.49 0.80 0.34 0.43 0.96 0.90 0.81 1.23 1.23 0.64 0.67 1.32 0.41 0.68 0.50 0.76 18.8  m 
GOF 0.50 0.82 0.37 0.37 1.12 0.74 0.73 1.18 1.29 0.68 0.77 0.90 0.42 0.66 0.49 0.74 2  h 
Trim2DGS 0.48 0.82 0.44 0.45 0.95 0.75 0.74 1.18 1.13 0.72 0.70 0.99 0.42 0.62 0.50 0.72 30  m 
G-surfels 0.66 0.93 0.54 0.41 1.06 1.14 0.85 1.29 1.53 0.79 0.82 1.58 0.45 0.66 0.53 0.88 14.4  m 
GS2Mesh 0.59 0.79 0.70 0.38 0.78 1.00 0.69 1.25 0.96 0.59 0.50 0.68 0.37 0.50 0.46 0.68 20  m 
Ours 0.44 0.74 0.31 0.36 0.87 0.73 0.72 1.23 1.10 0.66 0.64 1.16 0.36 0.58 0.44 0.68 19.0  m 

Table 2
Quantitative Comparison from MipNeRF360 dataset. We report the PSNR, SSIM 
and LPIPS. * means our re-implementation.

Outdoor scenes Indoor scenes 
PSNR ↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF 21.46 0.458 0.515 26.84 0.790 0.370 
Deep Blending 21.54 0.524 0.364 26.40 0.844 0.261 
Instant NGP 22.90 0.566 0.371 29.15 0.880 0.216 
Mip-NeRF360 24.47 0.691 0.283 31.72 0.917 0.180 
3DGS 24.24 0.705 0.283 30.99 0.926 0.199 
SuGaR 22.76 0.631 0.349 29.44 0.911 0.216 
2DGS* 25.25 0.793 0.235 31.24 0.920 0.203 
GOF 24.76 0.742 0.225 30.80 0.928 0.167 
Trim2DGS 24.11 0.714 0.246 29.84 0.915 0.193 
Ours 25.37 0.799 0.229 31.18 0.920 0.203 

Table 3
Quantitative results on the Tanks and Temples Dataset. We report the F1 score and average training time. * 
indicates our re-implementation, while other baselines scores are taken directly from the respective papers.

F1-Score↑ NeuS Geo-NeuS Neuralangelo 3DGS SuGaR 2DGS* GOF Ours 
Barn 0.29 0.33 0.70 0.13 0.14 0.41 0.51 0.45 
Caterpillar 0.29 0.26 0.36 0.08 0.16 0.24 0.41 0.28 
Courthouse 0.17 0.12 0.28 0.09 0.08 0.16 0.28 0.21 
Ignatius 0.83 0.72 0.89 0.04 0.33 0.52 0.68 0.73 
Meetingroom 0.24 0.20 0.32 0.01 0.15 0.17 0.28 0.22 
Truck 0.45 0.45 0.48 0.19 0.26 0.45 0.58 0.53 
Mean 0.38 0.35 0.50 0.09 0.19 0.33 0.46 0.40 
Time >24  h >24  h >24  h 7.9  m 2  h 34.2  m 2  h 35.1  m 

Fig. 7. Qualitative comparison of meshes on the Tanks and Temples Dataset. It can be observed that our method successfully fills in many missing areas and 
restores fine details.
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Table 4
Quantitative Results of Ablation on the DTU and Tanks and Temples datasets. We 
report Chamfer Distance (CD) and the number of Gaussians #G for the DTU dataset. For 
the Tanks and Temples dataset, we report Precison, Recall, F1-Score and #G. “OD” refers 
to Opacity Degeneration.

DTU Tanks and Temples 
Model Setting CD↓ #G↓ Precision↑ Recall↑ F1-Score↑ #G↓

w/o ESA 0.73 148  K 0.33 0.42 0.35 480  K 
w/o OD 0.71 192  K 0.36 0.44 0.38 686  K 
w/o Prune 0.71 216  K 0.35 0.45 0.39 634k 
2DGS 0.76 200  K 0.27 0.39 0.33 748  K 
Full model 0.68 170  K 0.37 0.45 0.40 568  K 

Fig. 8. Qualitative Results of Ablation on the DTU Dataset. It can be observed that ESA and opacity degeneration (OD) contribute to filling in missing areas and 
restoring the surface, with the pruning method causing no measurable degradation in geometric precision.

Table 5
Performance of ESA-GS on the DTU Dataset with different split number s. We report Chamfer Distance(CD) and the number of Gaussians #G.

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 CD↓ #G↓

s=2 0.46 0.74 0.32 0.38 0.90 0.75 0.73 1.26 1.12 0.66 0.64 1.25 0.36 0.61 0.44 0.70 152k 
s=3 0.44 0.74 0.31 0.36 0.87 0.73 0.72 1.23 1.10 0.66 0.64 1.16 0.36 0.58 0.44 0.68 170k 
s=4 0.46 0.74 0.32 0.37 0.89 0.75 0.73 1.26 1.10 0.68 0.62 1.14 0.35 0.60 0.43 0.69 193k 

5.4. Ablation

Effectiveness of major components. To validate the effectiveness of ESA, opacity degeneration, and the pruning strategy, we conduct 
experiments by excluding each component individually from full model while keeping the others intact. As shown in Table 4 and 
Fig. 8, all three components improve geometric reconstruction accuracy. Each component serves a distinct purpose: the ESA module 
plays a critical role in surface reconstruction. Although it increases the number of Gaussians, it remains essential to our method. 
Meanwhile, both the opacity degeneration and pruning module help reduce the overall number of Gaussians, keeping it significantly 
lower than 2DGS. These results demonstrate that both strategies are beneficial for surface reconstruction. Together, they provide 
valuable insights into the contributions of each module, showing how their integration collectively enhances model performance. 
Overall, the opacity degeneration and pruning measures effectively counterbalance the increase in Gaussian points and training time 
caused by ESA, achieving a dynamic balance in efficiency.

Elongation split number. We also investigated the impact of different elongation split numbers 𝑠 on the results. Quantitative results 
are presented in Table 5 and Table 6. The experimental results show that as the number of splits increases, the total number of 
Gaussians also increases. When 𝑠 = 2, the number of Gaussians is relatively small, but the performance across all three datasets remains 
suboptimal. When 𝑠 = 4, the performance is still inferior compared to 𝑠 = 3, which can be attributed to overlapping phenomena or 
redundant Gaussians generated by incorrectly retained edges of elongated Gaussians. From this, we can infer that increasing the value 
of 𝑠 does not improve the overall reconstruction quality and may instead degrade it due to overlapping phenomena. Therefore, we 
decide to split each elongated Gaussian into three assimilated Gaussians. This strategy ensures that the number of Gaussians does not 
increase significantly and preserves the original geometric integrity.
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Table 6
Performance of ESA-GS on the MipNeRF360 and Tanks and Temples dataset with different split 
number s.

MipNeRF360 Tanks and Temples 
Outdoor scenes Indoors scenes Barn Caterpillar 
PSNR↑ #G↓ PSNR↑ #G↓ F1-Score↑ #G↓ F1-Score↑ #G↓

s=2 25.19 189  K 30.95 614  K 0.31 241  K 0.27 464  K 
s=3 25.37 193  K 31.18 649  K 0.45 380  K 0.28 506  K 
s=4 25.24 196  K 31.09 689k 0.37 383  K 0.27 515  K 

6. Conclusion

We propose ESA-GS, a novel method that enhances surface reconstruction accuracy by splitting and assimilating elongated Gaus-

sians near the surface. Our approach significantly improves the geometric precision of the reconstruction. To complement this, we 
introduce an opacity degeneration strategy and a new pruning strategy during training, which effectively reduces memory consump-

tion. Extensive experiments show that our method achieves significant improvements in surface reconstruction.

However, similar to previous methods, it struggles with specular reflections and requires tuning several hyperparameters. Explor-

ing adaptive adjustment of the split count 𝑠 based on Gaussian characteristics will be a key focus of our future research. Additionally, 
the reduced number of points may impact rendering quality in certain scenes compared to 2DGS, indicating the need for further 
optimization.
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