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Abstract
Point cloud normal estimation underpins many 3D vision and graphics applications. Precise normal estimation in regions
of sharp curvature and high-frequency variation remains a major bottleneck; existing learning-based methods still struggle
to isolate fine geometry details under noise and uneven sampling. We present FAHNet, a novel frequency-aware hierarchical
network that precisely tackles those challenges. Our Frequency-Aware Hierarchical Geometry (FAHG) feature extraction module
selectively amplifies and merges cross-scale cues, ensuring that both fine-grained local features and sharp structures are faithfully
represented. Crucially, a dedicated Frequency-Aware geometry enhancement (FA) branch intensifies sensitivity to abrupt normal
transitions and sharp features, preventing the common over-smoothing limitation. Extensive experiments on synthetic benchmarks
(PCPNet, FamousShape) and real-world scans (SceneNN) demonstrate that FAHNet outperforms state-of-the-art approaches
in normal estimation accuracy. Ablation studies further quantify the contribution of each component, and downstream surface
reconstruction results validate the practical impact of our design.
CCS Concepts
• Computing methodologies → Point-based models; Parametric curve and surface models;

1. Introduction

With the rapid advancement of autonomous driving [YCSL24] and
virtual reality [GRAS∗21], 3D point cloud data has emerged as
a vital resource for accurately representing real-world objects and
complex environments. Among the core tasks in point cloud anal-
ysis, normal estimation plays an essential role by inferring local
surface orientations from raw point samples. Accurate normals
are crucial for many downstream applications, such as surface re-
construction [KBH06], [KH13a], graphic rendering [WWR22], se-
mantic segmentation [CO18], classification [WQF19], target track-
ing [GZXS24], where subtle geometric details often provide signif-
icant cues.

Traditionally, normal estimation has relied on local geometric
primitive fitting—using techniques such as principal component
analysis (PCA) to obtain local planes or polynomial surface fitting
to determine the surface orientation [HDD∗92] [MN03] [HLZ∗09].
Although these methods are straightforward and computationally
efficient, they are highly sensitive to noise, density variations, and
require careful parameter tuning. Consequently, their performance
often deteriorates when handling complex geometries or varying
noise levels.

† Corresponding Author

In contrast, recent years have witnessed a surge in deep learning-
based methods that address these limitations by leveraging the repre-
sentational power of neural networks. Broadly, these approaches fall
into two categories. The first type, like IterNet [LOM19], DeepFit
[BSG20], AdaFit [ZLD∗21], GraphFit [LZW∗22], adopts a fitting-
based paradigm where deep networks are used to predict point-wise
weights that guide weighted least squares fitting. The second em-
ploys regression-based strategies that directly predict the normal
vector from features extracted via multilayer perceptrons (MLPs).
PCPNet [GKOM18] was the first to employ neural networks to
regress normals from unstructured point clouds directly. Zhang et
al. [ZCZ∗22a] transfer the point-wise weights from fitting-based
methods into a regression-based framework, enabling the network
to learn under the guidance of latent geometric features. Subsequent
studies [ZCZ∗22b], [LLC∗22], [LFS∗23], [XLW∗23], [WZL∗24]
have consistently elevated normal estimation accuracy to unprece-
dented levels.

Despite significant progress, critical challenges remain. First, to
extract accurate local geometric features, many methods employ a
KNN-based graph features learning strategy. However, the choice
of KNN scale size significantly impacts model performance; a large
scale may lose fine-grained local details, while a small one height-
ens sensitivity to noise. Although recent works adopt multi-scale
strategies to extract local geometric features for both accuracy and

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



2 of 11 Chengwei Wang & Wenming Wu & Yue Fei& Gaofeng Zhang & Liping Zheng /

A
tte

nt
io

na
l W

ei
gh

te
d 

Fe
at

ur
e 

Fu
si

on

1s

3s

2s

1F

2F

3F

(ii) FANet Frequency-Aware Multi-Scale

(i) Common Multi-Scale

Frequency Learning
Coordinate  Learning

Coordinate  Learning

1s2s

Frequency Learning
Coordinate  Learning

Frequency Learning
Coordinate  Learning

3s

Residual Feature Fusion

( )

6.48 low

high

Ours  w /o FA

6.85

Ours  w /  FA

CMG Net

7.54

Hsurf-Net

8.37 7.06

SHS-Net

7.48 

MSECNet

(a)

Figure 1: Comparing our FAHNet with common multi-scale normal regression methods. (a) Previous regression methods typically employ
downsampling and dimensional transformations with MLPs to achieve multi-scale feature fusion, and learning only in the coordinate space.
In contrast, our method employs a parallel hierarchical architecture, combined with attention mechanisms for fusing hierarchical multi-scale
features. It extends the learning paradigm by integrating frequency-domain representations of point clouds with coordinate space features
through our Frequency-Aware geometry enhancement (FA) module. (b) Visualization of normal RMSE errors, our method outperforms the
comparison methods, and the FA module further enhances estimation accuracy for complex structures and sharp features.

robustness [GKOM18], [XLW∗23], [WZL∗24]. Those fused rep-
resentations often degrade through subsequent downsampling and
dimension transformations, preventing the network from capturing
fine-grained surface structures. Second, recovering accurate nor-
mals around sharp edges and high-curvature areas remains challeng-
ing, and this difficulty is further exacerbated by noise and uneven
sampling. Moreover, Rahaman et al. [RBA∗19] point out that MLPs
tend to learn low-frequency components of the data, which hinders
effective analysis of high-frequency variation and sharp features in
normal estimation tasks. These shortcomings in feature extraction
severely constrain overall normal-estimation performance.

To address the issues mentioned above, we propose FAHNet.
This novel end-to-end architecture combines hierarchical multi-
scale spatial structures with frequency awareness for accurate and
robust normal estimation. As illustrated in Fig. 1, FAHNet’s back-
bone is a Frequency-Aware Hierarchical Geometry (FAHG) mod-
ule. FAHG employs multiple resolution streams that concurrently
encode both contextual structures and fine-grained details across
distinct spatial hierarchies. This design preserves geometric cues
at each hierarchical layer, thereby strengthening the network’s ca-
pacity for multi-scale feature analysis. Unlike prior approaches that
aggregate hierarchical features via successive downsampling and di-
mension transformations, we introduce an Attentional Hierarchical
Feature Fusion (AHFF) module that dynamically selects keypoint
features and combines cross-scale representations, markedly en-
hancing the network’s capacity to learn fine-grained surface details.
Moreover, to counteract the inherent low-frequency bias of MLPs,

we embed a Frequency-Aware geometry enhancement (FA) branch
at each hierarchical layer. FA enhances the network’s representation
of high-frequency geometry information, resulting in more accurate
estimations in regions with complex structures and sharp features,
particularly under noisy conditions.

We evaluate our approach through comprehensive experiments on
synthetic datasets PCPNet [GKOM18] and FamousShape [LFS∗23],
which encompass scenarios with non-uniform density, discontinu-
ous point clouds, noise, thin and sharp structures, as well as on
real-world datasets SceneNN [HPN∗16] to demonstrate its general-
ization capability. In direct comparisons with recent state-of-the-art
methods, FAHNet achieves the highest prediction accuracy with
the fewest parameters. Ablation studies further confirm the effec-
tiveness of each module. Our major contributions can be described
as follows:

• We propose FAHNet, a novel end-to-end normal estimation ap-
proach featuring a hierarchical multi-scale backbone and an atten-
tional fusion module, enabling precise and fine-grained geometry
feature extraction.

• We introduce a frequency-aware geometry enhancement branch
that captures high-frequency details in point clouds, substantially
enhancing the model’s ability to recover intricate surface struc-
tures under variable density and noise.

• Extensive experiments on multiple diverse datasets demonstrate
that our method outperforms recent state-of-the-art approaches
in both prediction accuracy and robustness.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Chengwei Wang & Wenming Wu & Yue Fei& Gaofeng Zhang & Liping Zheng / 3 of 11

2. Related Work

2.1. Traditional Methods

Classic normal estimation techniques typically derive the sur-
face normal at a point by analyzing its local neighborhood. The
most prevalent approach is based on Principal Component Analy-
sis (PCA), HOPPE et al. [HDD∗92] compute the covariance ma-
trix of points within a fixed-size patch and defines the normal as
the eigenvector corresponding to the smallest eigenvalue. Variants
[MN03] [HLZ∗09] have emerged to improve robustness in noisy
settings—for example, Moving Least Squares (MLS) [Lev98] and
truncated Taylor expansion fitting (n-jet) [CP05] incorporate higher-
order fittings over larger neighborhoods to mitigate noise influ-
ence. Other methods, such as local spherical surface fitting [GG07]
and [ASL∗17], further attempt to account for variations in patch
scale.

To preserve finer geometric details, alternative techniques such as
Voronoi diagrams [AB98] [ACSTD07] [MOG11], Hough transform
[BM12], and plane voting [ZCL∗19] have been introduced. Despite
offering more accurate results, these methods require meticulous
manual parameter tuning (e.g., neighborhood size or voting thresh-
olds). More recently, iPSR [HWW∗22] uses iterative Screened-
PoissonSurfaceRecon struction(SPSR) [KH13b] alternately infers
normals from the current mesh and refines the surface. Marin
et al. [MOW24] used a parameter-free spheres-of-influence graph
(SIG) to capture the connectivity of the point cloud and then estimate
normals. However, their method did not consider large-scale point
clouds and remains sensitive to data corruption. SNO [HFZ∗24]
proposes a stochastic L-BFGS optimization of a signed-uncertainty
field for normal orientation. WNNC [LSL24] utilizes the normal di-
rection to optimize the winding number formula for globally consis-
tent normals. In summary, traditional methods offer interpretability
and strong theoretical support but often struggle to capture sharp
features and detailed local information in diverse and noisy datasets.
Some also require multi-stage optimization, which leads to poor
time efficiency and difficulty handling large-scale point clouds.

2.2. Learning-Based Methods

The past years have witnessed a surge in deep learning–based normal
estimation techniques, largely driven by the powerful feature extrac-
tion capabilities of neural networks. These methods can be broadly
categorized into two groups: deep surface fitting approaches and
regression-based approaches.

Surface Fitting. Surface Fitting Approaches learn to predict point-
wise weights that guide a weighted surface polynomial fitting
on local patches. Early works like DeepFit [BSG20] and Iter-
Net [LOM19], leverage these learned weights to perform a more
robust surface fit. Subsequent advances, such as incorporating multi-
scale feature aggregation in AdaFit [ZLD∗21] or integrating graph
convolutional layers, as seen in GraphFit [LZW∗22], further refine
the weight prediction process. Zhou et al. [ZJW∗21] improve normal
estimation by simplifying the surface fitting process through a Top-
K selection strategy and a refined point update mechanism, thereby
enhancing the robustness of the method. Zhang et al. [ZCZ∗22a]
propose a geometry-guided deep learning framework that explicitly
integrates geometric constraints into surface normal estimation. Du

et al. [DYW∗23] reexamine the approximation error in 3D surface
fitting for normal estimation, offering critical insights that pave the
way for designing more accurate techniques. Li et al. [LLZ∗24]
introduces a geometry-aware hierarchical learning framework that
integrates the geometry-aware hierarchical graph representation into
the fitting process. These methods excel at reducing the dependence
on manual parameter tuning and often demonstrate improved per-
formance in clean conditions. However, they remain constrained
by the fixed order of the polynomial fitting, making them suscep-
tible to overfitting or underfitting whenever the underlying surface
complexity varies significantly.

Regression-Based. Regression-Based methods treat normal esti-
mation as a direct regression problem and leverage network archi-
tectures to infer normal vectors from raw point cloud patches. Early
methods, such as HoughCNN [BM16], convert point cloud data
into 2D representations (e.g., Hough space or height maps), which
are then processed by convolutional neural networks (CNNs). Al-
though this tactic benefits from mature 2D network architectures, it
inevitably loses some intrinsic 3D geometric details. To counteract
this, subsequent approaches exemplified by PCPNet [GKOM18]
operated directly on unstructured 3D point clouds using Point-
Net [QSMG16] as the backbone for multi-scale feature extraction.
This is the first method to implement direct normal regression from
local point patches. Further innovations have introduced additional
cues through point-voxel architectures, local plane constraints, and
the incorporation of supporting information such as initial nor-
mals and height maps. Hashimoto et al. [HS19] incorporates spa-
tial structural information into point cloud models for normal es-
timation with a dual-stream network. Ben et al. [BSLF19] learn
a multi-scale feature representation that automatically identifies
the optimal local patch neighborhood scale. Zhou et al. [ZHLL19]
propose an innovative normal estimation approach that integrates
local plane constraints with a multi-scale selection mechanism.
Refine-Net [ZCZ∗22b] introduces a dedicated refinement network
that iteratively enhances initial normal estimates on noisy point
clouds through multi-scale feature fusion and adaptive correction
strategies. HSurf-Net [LLC∗22] and SHS-Net [LFS∗23] ingeniously
transform the regression task on point clouds into hyper surface
representations prediction, achieving robust and accurate normal
estimation. NeAF [LZM∗23] learns neural angle fields for point
normal estimation, enabling the robust capture of subtle angular
variations in point clouds for more precise surface geometry rep-
resentation. MSECNet [XLW∗23] enhances normal estimation by
integrating edge detection technology into a multi-scale edge con-
ditioning stream framework, thereby achieving significantly higher
accuracy. CMG-Net [WZL∗24] introduces a novel Chamfer Normal
Distance metric to resolve normal direction inconsistencies caused
by noise in point clouds, thereby significantly enhancing the ro-
bustness of the model’s predictions under noisy conditions. Li et
al. [LLX∗24] introduces a transformer-based framework that fuses
visual semantic cues to extract refined surface geometry. While
regression-based methods demonstrate promising results on well-
structured, clean point clouds, they still rely heavily on network
architecture designs and often struggle to capture subtle geometric
variations under noisy conditions.
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Figure 2: Architecture of the proposed method. (a) Overall Pipeline of FAHNet, our method predicts normals in an end-to-end manner. (b)
Frequency-Aware Local Feature Extraction, composed of a coordinate branch and a frequency branch. (c) Attentional Hierarchical Feature
Fusion . (d) Weighted Normal Prediction.

3. Method
3.1. Challenges
Despite significant progress, learning-based methods still confront
the following challenges. The primary difficulty lies in achieving
accurate and robust feature extraction. The inherent lack of
connectivity among points, coupled with noise, makes it difficult
to extract fine-grained geometric details. This challenge is exac-
erbated with complex surface variations, where preserving sharp
edges requires robust and adaptive feature extraction strategies. Fur-
thermore, limitations in existing frameworks (e.g., MLPs, classical
graph convolutions) also restrict the network’s ability to extract ac-
curate geometric details directly from the point cloud. The second
is Critical detail preservation in multi-scale fusion. Scale size
selection is critical. While larger scales tend to provide robustness
against noise, they often oversmooth essential shape details. Con-
versely, smaller scales capture finer geometric nuances but exhibit
higher sensitivity to noise. Moreover, integrating features across
these scales introduces additional complexities that can suppress
critical fine-grained information.

3.2. Overview
To address the challenges above, we propose FAHNet, a novel end-
to-end approach designed for accurate and robust point cloud nor-
mal estimation. The overall architecture is shown in Fig. 2(a), for
any given point q in X = {xi ∈ R3}T

i=1, T denotes the total number
of points in the point cloud, we use KNN algorithm to construct
its corresponding local patch P = {xi ∈ R3}N

i=1, N is the number
of neighbors. To mitigate training instability caused by variations
in point cloud orientation, we first apply normalization and a ro-
tation transformation called Quaternion Spatial Transformer Net-
work (QSTN), which is similar to [GKOM18]. Subsequently, we

feed the constructed hierarchical sub-patches Si (the points high-
lighted in yellow), along with their corresponding graph features,
into the Frequency-Aware Hierarchical Geometry (FAHG) feature
extraction module (Sec. 3.4) to obtain fine-grained geometric fea-
tures separately. These features are then fused via an Attentional
Hierarchical Feature Fusion (AHFF) module (Sec. 3.4), specifically
designed to capture and aggregate discriminative information across
different hierarchical scales. To further enhance the network’s abil-
ity to capture sharp geometric details, we introduce the Frequency-
Aware geometry enhancement (FA) module (Sec. 3.3), which ex-
tracts high-frequency variations directly from the raw point cloud
and seamlessly integrates them into the feature extraction pipeline.
Finally, the network outputs the predicted normal vector nq ∈ R3 for
query point q.

3.3. Frequency-Aware Local Feature Extraction

As shown in the Fig. 2(b), within the Frequency-Aware Local Fea-
ture Extraction (FALFE) module, each normalized sub-patch Si
and the initial knn graph feature are passed through the coordinate
branch to extract distance features and through the frequency branch
to extract spectral features, and then the two outputs are merged via
residual MLPs.

In the coordinate learning branch, the geometric processed feature
fi can be expressed by the following equations:

fi+1 = Φ3 ( s⃝(Φ2 ((MEAN c⃝MAX){Φ1 ( fi ·wi)})) (1)

where i = 1,2, . . . ,S, and S total hierarchy level numbers and i is
the the current index, Φ1,Φ2,Φ3,Φ4 is MLP layers, c⃝ is the
concatenation, s⃝ is the residual MLP for skip-connection, and
(MEAN c⃝MAX){·} represents concatenated average pooling and
maxpooling features over current patch Si. wi is a linear distance
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graph node weight, and for each node xi ∈ Si, its weight is computed
by

wxi =
βxi

Ns
i=1 βxi

,βxi = sigmoid (α1 −α2 | |xi −q| |2) , (2)

where Ni is the point number of Si, α1 and α2 are learnable pa-
rameters, and wps enables the network to tune the weights of patch
points in a distance-aware manner. Besides, we stack the coordinate
branch three times.

In recent years, several studies [RBA∗19], [MST∗20], [TSM∗20]
have pointed out that MLPs tend to learn the low-frequency fea-
tures present in data preferentially, exhibiting a poorer ability to
fit high-frequency functions. This phenomenon is also evident in
normal estimation tasks, where MLPs yield significantly lower per-
formance in estimating complex regions with high-frequency vari-
ation compared to those with low-frequency variation, resulting in
an over-smoothing pitfall. The vertex in the complex area and its
nearby neighbors often have nearly identical coordinate graph fea-
tures; however, their ground-truth normals may differ by more than
30 degrees. MLP struggles to predict sharp normal changes from
these similar coordinate features.

x
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Figure 3: Illustration of per point cloud mapping process in FA.

This suggests that a purely coordinate architecture is ineffective in
capturing drastic curvature changes of the underlying surface from
point clouds. To address this issue, as shown in the Fig. 3, we have
designed a Frequency-Aware Geometry Enhancement (FA) branch
that extracts high-frequency point cloud information from the coor-
dinate. FA consists of a series of learnable sine and cosine functions
combined with an MLP, which can be expressed as follows:

Ei = Φ4 ( c⃝ {(γ2 · sin(2l
πSi · γ1)), (γ2 · cos(2l

πSi · γ1))}L
l=0) (3)

where Ei is the high-frequency feature of Si after enhancement
learning, γ1,γ2 are learnable parameters. L represents the number
of frequency mapping layers, which is set to 10 based on experi-
ments, and Φ4 is the MLP. For each point xi in Si, we use the L
layers adaptive sine and cosine mapping functions to lift its 3D co-
ordinates xi = [x,y,z] ∈ R1×3 into a high-dimensional feature vector
exi ∈ R1×(2×3×L) . In this process, γ1,γ2 and Φ4 dynamically adjust
the mapping scale in a data-driven manner, balancing the contribu-
tions of different frequency components to the gradients. FA ampli-
fies coordinate differences with adaptive high-dimensional Fourier
mapping, improving the network’s ability to capture high-frequency
details and providing more accurate results in complex geometries.

Afterward, as illustrated in the Fig. 2(c), by fusing the outputs of
the coordinate feature fi and frequency branches Ei, we derive the
fused frequency-aware feature Fi of hierarchical layer Si.

Fi = Φ5 ( c⃝( fi1, fi2, fi3,Ei)) (4)

where fi1, fi2, fi3 is processed patch graph ifeatures of sub-patch Si
, Φ5 is MLP layer.

3.4. Frequency-Aware Hierarchical Geometry

Numerous prior studies have demonstrated that multi-scale archi-
tectures yield significant performance gains for normal estimation
networks. However, the common strategy is to integrate different
scale features along with downsampling and channel transforma-
tions, which may inadvertently lead to the loss of fine-grained de-
tails during forward propagation. As shown in the Fig. 2(a) and (c),
we design a parallel hierarchical architecture that guarantees the in-
trinsic multi-scale geometric features at each level are maintained as
the network progresses. To fuse features across different levels, we
introduce an AHFF that dynamically integrates geometric features
across different hierarchical scales.

MS = Φ6 (Φ7

(
S

s=0
(Attn ·Fs)

)
+Φ8 ( c⃝) (F1,F2,F3)) (5)

Attn = Φ9 (MAX{ S
i=0

Fi}) (6)

i where MS denote the final aggregated multi-scale features,S repre-
sent the tot hierarchical level index, and Fi denote the local features
at scale Si,Φ6,Φ7,Φ8,Φ9 is MLP layers. Within theΦ6, we perform
a downsampling operation on the obtained hierarchical features to
enable precise local feature extraction in the subsequent normal
estimation stage.

3.5. Weighted Normal Prediction

As shown in the Fig. 2(d), our network predicts a patch points weight
Wn to ensure that only the points genuinely beneficial for the final
normal prediction receive larger parameter coefficients, ensure the
network can learn to differentiate the correct local surface variations.
Finally, we leverage attention mechanisms to predict normals from
the final hierarchical geometry feature MS.

nq = Φ13 (MAX{Φ12 (MSW )} ×⃝(Φ11 (MSW ))) (7)

where MSW = Φ10 (Wn ·MS), MAX{·} represents maxpooling fea-
tures over downsampled patch.

3.6. Loss Function

Our loss function consists of several components. The first is a regu-
larization loss function for Z-direction correction, which constrains
the training of the QSTN rotation matrix R.

L1 = ∥ngtR× z∥, (8)

where z = (0,0,1).

To constrain normal prediction both geometrically and mathe-
matically, we simultaneously compute the sine distance and the
squared Euclidean distance between the predicted normals npre

q and
the ground truth normals ngt

q

L2 = ( | |npre
q ×ngt

q | | +min( | |npre
q −ngt

q | |2, | |npre
q +ngt

q | |2)) (9)

Additionally, we evaluate the continuity of the normals between
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Table 1: Normal estimation RMSE ↓ comparison on PCPNet, FamousShape and SceneNN datasets. The best results are marked in Red, and
the second-best are marked in Blue.

PCPNet Dataset FamousShape Dataset SceneNN Dataset
Noise Density Noise DensityMethods year

None 0.12% 0.60% 1.20% Strip. Grad. AVG None 0.12% 0.60% 1.20% Strip. Grad. AVG Clean Noise AVG

PCA 1992 12.29 12.87 18.38 27.52 13.66 12.81 16.26 19.90 20.60 31.33 45.00 19.84 18.54 25.87 15.93 16.32 16.12
Jet 2005 12.35 12.84 18.33 27.68 13.39 13.13 16.29 20.11 20.57 31.34 45.19 1.82 18.69 25.79 15.17 15.59 15.38
PCPNet 2018 9.64 11.51 18.27 22.84 11.73 13.46 14.58 18.47 21.07 32.60 39.93 18.14 19.50 24.95 20.86 21.40 21.13
Nesti-Net 2019 7.06 10.24 17.77 22.31 8.64 8.95 12.50 11.60 16.80 31.61 39.22 12.33 11.77 20.55 13.01 15.19 14.10
DeepFit 2020 6.51 9.21 16.73 23.12 7.92 7.31 11.80 11.21 16.39 29.84 39.95 11.84 10.54 19.96 10.33 13.07 11.70
AdaFit 2021 5.19 9.05 16.45 21.94 6.01 5.90 10.76 9.09 15.78 29.78 38.74 8.52 8.57 18.41 8.39 12.85 10.62
GraphFit 2022 5.21 8.96 16.12 21.71 6.30 5.86 10.69 8.91 15.73 29.37 38.67 9.10 8.62 18.40 8.39 12.85 10.62
Hsurf-Net 2022 4.17 8.78 16.25 21.61 4.98 4.86 10.11 7.59 15.64 29.43 38.54 7.63 7.40 17.70 7.55 12.33 9.89
NeAF 2023 4.20 9.25 16.35 21.74 4.89 4.88 10.22 7.67 15.67 29.75 38.76 7.22 7.47 17.76 - - -
SHSnet 2023 3.95 8.55 16.13 21.53 4.91 4.67 9.96 7.41 15.34 29.33 38.56 7.74 7.28 17.61 7.93 12.40 10.17
MSECNet 2023 3.84 8.74 16.10 21.05 4.34 4.51 9.76 6.73 15.52 29.19 38.06 6.68 6.70 17.15 6.94 11.66 9.30
CMGNet 2024 3.86 8.45 16.08 21.89 4.85 4.45 9.93 7.07 14.83 29.04 38.93 7.43 7.02 17.39 7.64 11.82 9.73
Ours - 3.25 8.37 16.12 21.10 3.82 3.89 9.43 6.55 14.88 29.37 38.82 6.46 6.38 17.08 7.48 11.65 9.56

the query point q’s neighbor points xi, with weight wn.

L3 =
1
N

N
i=1

wn ( | |npre
xi

×ngt
xi
| | +min( | |npre

xi
−ngt

xi
| |2, | |npre

xi
+ngt

xi
| |2))

(10)
where npre

xi and ngt
xi denote the predicted normal of the neighbor

points and the ground truth normal, respectively.

To ensure that the network can effectively identify the points that
genuinely contribute to the final normal estimation stage, we use a
weight loss to supervise wn

L4 =
1
M

M
i=1

(wpre
ni −wgt

ni)
2 (11)

where M represents the number of nearest neighbors for query point
q after downsampling, npre

wni and ngt
wni denote the predicted weight

and the ground truth weight of neighbor point xi, wgt
ni = exp(−(xi ·

ngt
q )2/δ2) and δ = max(0.052,0.3M

i=1 (xi ·ngt
q )2/M) [ZCZ∗22a].

Finally, the complete loss function is defined as follows

L = λ1L1 +λ2L2 +λ3L3 +λ4L4 (12)

where λ1 = 0.5, λ2 = 0.1, λ3 = 0.2, λ4 = 1 are the weighting factors
determined based on experiment.

4. Experiment

4.1. Datasets

Consistent with recent sota work, we first evaluate our method on the
synthetic datasets PCPNet [GKOM18] and FamousShape [LFS∗23],
each cloud contains 100k points. The point cloud is augmented by
adding low, medium, and high noise with standard deviations of
0.12%, 0.6%, and 1.2%. Additionally, density variations (stripes
and gradients) are also included. We further evaluated our method
on real-world indoor dataset SceneNN [HPN∗16] that contains clean
and noisy (0.3%) clouds with 100k points in each scene to demon-
strate its generalizability.

4.2. Implementation

We exclusively employ the PCPNet dataset for training, following
the same experimental setup (including the train-test split and aug-
mentation) described in [LFS∗23]. The local patch size N is set to
700 for each randomly selected query point. The sub-patch sizes
are set to {700,350,150}, respectively, with corresponding KNN
scales of {16,16,10}. For training, we use the Adam optimizer with
an initial learning rate of 5×10−4, which decays following a cosine
schedule over 1000 epochs with a batch size of 128. All experiments
were conducted on a single RTX 4090 GPU. We use the angle Root
Mean Squared Error (RMSE) to evaluate the performance.

4.3. Performance Comparison

To validate the effectiveness of FAHNet we first conducted com-
prehensive comparative experiments with several classical meth-
ods and latest learning-based approaches, including the follow-
ing: Jet [CP05], PCA [HDD∗92], PCPNet [GKOM18], Nesti-
Net [BSLF19], DeepFit [BSG20], AdaFit [ZLD∗21], Graph-
Fit [LZW∗22], Hsurf-Net [LLC∗22], NeAF [LZM∗23], SHS-Net
[LFS∗23], MSECNet [XLW∗23], CMGNet [WZL∗24]. Table 1
presents a comprehensive statistical summary of all compared ap-
proaches evaluated on the PCPNet and FamousShape datasets. No-
tably, our proposed method achieves the highest accuracy on both
synthetic datasets, particularly under low-noise conditions, demon-
strating a significant performance improvement. In Fig. 4 we present
visual comparison results for the synthetic datasets PCPNet and Fa-
mousShape dataset under varying input conditions. Our method
consistently yields markedly lower prediction errors in sharp re-
gions and complex structures compared to alternative approaches,
underscoring its superior effectiveness in capturing high-frequency
variations in point clouds.

We also conducted experiments on the real-world scanning
dataset SceneNN [HPN∗16] to evaluate the generalization capabil-
ity of our method. In Table 1, our FAHNet achieved second-optimal
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Figure 4: Visual comparisons of normal estimation errors on the synthetic datasets PCPNet and FamousShape with clean, noise, and density
variations input. The clouds are rendered with per-point angle error.
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Table 2: Normal estimation ablation studies on PCPNet dataset with the (a) Frequency-Aware Hierarchical Geometry (FAHG); (b) Attentional
Hierarchical Feature Fusion (AHFF); (c) Frequency-Aware Geometry Enhancement (FA); (d) Loss function. The best results are marked in
Red.

Ablation Studies
PCPNet Dataset

Noise Density AVGNone 0.12% 0.60% 1.20% Striped Gradient
(a) w/o Attentional Hierarchical Feature Fusion 3.87 8.49 16.26 21.53 4.77 4.59 9.92
(b) w/o Frequency-Aware Geometry Enhancement 3.42 8.71 16.59 21.71 4.12 4.22 9.79

(c)

w/o Frequency-Aware Hierarchical Geometry (S=1) 3.47 8.34 16.16 21.07 4.16 4.10 9.55
S=2 3.36 8.37 16.11 21.12 3.98 4.07 9.50
S=4 3.44 8.57 16.26 21.32 4.15 4.19 9.65
w/o Weight 3.49 8.33 16.14 21.13 4.00 4.02 9.52

(d)

w/o Sin loss 3.58 8.49 16.15 21.23 4.29 4.14 9.65
w/o Squared Euclidean Distance loss 3.23 8.37 16.42 21.53 3.94 3.97 9.58
w/o Neighbor loss 3.30 8.48 16.24 21.29 3.95 3.99 9.54
w/o QSTN loss 3.58 8.38 16.18 21.08 4.23 4.06 9.58

Full method 3.25 8.37 16.12 21.10 3.82 3.89 9.43

performance, trailing the best result by only 2.7%. However, it is
noteworthy that our method uses just 2.3M parameters—less than
one quarter of MSECNet’s 10.4M. Consistent with the synthetic
datasets, we also present visual comparison results on the real-
world dataset SceneNN in Fig. 5. The results demonstrate that our
method better understands the edges of sharp objects in real-world
scenes, even with noise condiction.

To further demonstrate the capability of our method in capturing
complex geometric features, we conducted experiments on models
with highly intricate geometries. The experiment compares the lat-
est techniques, including non-learning methods iPSR [HWW∗22],
WNNC [LSL24] and learning-based methods CMG [WZL∗24],
MSECNet [XLW∗23], SHS-Net [LFS∗23]. For both of non-learning
methods, we use the recommended parameters setting in their of-
ficial implementations. Each point cloud comprises 100k points,
randomly sampled from triangular meshes in the Thingi10K dataset
[ZJ16]. The ground-truth normals for each point are the normals of
the corresponding triangles on which the points reside. As shown
in Fig. 7. All methods tend to make most errors on sharp edges,
thin-sheet structures, and acute chamfers. However, by more effec-
tively capturing high-frequency variations, our approach provides
the most accurate normal estimates in these particularly difficult
areas with large curvature changes.

4.4. Ablation Studies

To systematically evaluate the contribution of each architectural
component in FAHNet, we conduct comprehensive ablation studies
as follows. The results are presented in Table 2.

(a) Attentional Hierarchical Feature Fusion. The proposed
AHFF mechanism improves accuracy under all input conditions
compared to naive downsampling and concatenation fusion oper-
ations. This demonstrates that AHFF can effectively distill useful
features across different hierarchical layers .

(b) Frequency-Aware Hierarchical Geometry. We analyze the
influence of FAHG by progressively increasing the number of

low

high

 w
/  

FA
w

/o
  F

A
4.98 18.16 10.699.11

4.56 16.77 9.308.48

Figure 6: Visualization of the FA module’s effects.Including spikes,
complex topologies, chamfers, sharp edges, and noisy input condi-
tions.

FALFE layers from S = 1 to S = 4. Besides, other entries in Ta-
ble 2 were conducted with S = 3. Experimental results reveal that
the three-layer architecture achieves optimal performance, demon-
strating that our framework enables effective multi-scale geometric
pattern learning while avoiding over-decomposition artifacts.

Table 3: Ablation studies on FA with different layer setups, average
RMSE on PCPNet is reported.

w/o FA w/ FA
S=1 9.98 9.55
S=2 9.80 9.50
S=4 9.84 9.65
S=3(Full method) 9.79 9.43

(c) Frequency-Aware Geometry Enhancement. Compared to
architectures without the FA module, it significantly elevates accu-
racy across various input conditions, especially under noisy input.
This demonstrates that FA enables networks to learn high-frequency
variation in point clouds robustly. Moreover, the visual comparison
given in Fig. 6 confirm that. Additionally, to explore the interaction
between FA and the coordinate branch, we also tested FA under dif-
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Figure 8: Surface Reconstruction Comparison.

ferent layer setups in Table 3. Regardless of the layer configuration,
incorporating the FA consistently yields significant improvements
in model performance, demonstrating the effectiveness of FA.

(d) Loss function. In addition, we evaluated various combina-
tions of loss functions and identified the optimal configuration. After
incorporating a Euclidean regression loss component with physics-
informed sine normal loss, the model’s robustness to noisy inputs
has significantly improved.

4.5. Application

The proposed normal estimation framework demonstrates inherent
compatibility with downstream surface reconstruction pipelines.
Leveraging our predicted oriented normals as geometric priors, we
implement Poisson surface reconstruction [KBH06] to generate wa-
tertight meshes from raw point clouds. As demonstrated in Fig. 8
with Hausdorff Distance(×10−3 ), our method achieves superior re-
construction fidelity compared to competing approaches. Even with

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



10 of 11 Chengwei Wang & Wenming Wu & Yue Fei& Gaofeng Zhang & Liping Zheng /

incomplete and sparse point-cloud inputs, the surface reconstructed
with our normal exhibits the fewest artifacts.

5. Conclusion

In this work, we propose FAHNet, an end-to-end approach for ac-
curate and robust point cloud normal estimation, addressing poor
prediction in areas with strong features. By introducing a novel
hierarchical architecture incorporating a frequency-aware module,
our method enhances prediction accuracy on both synthetic and
real-world datasets. However, our approach also exhibits some lim-
itations, performance under noisy conditions still leaves room for
improvement, pointing to a promising direction for future research.
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