FloorplanSBS: Synthesizing Vector Floorplans by Patch-Based
Floorplan Segmentation

Wenming Wu Tianlei Sheng
Hefei University of Hefei University of
Technology Technology

Hefei, China
wwming@hfut.edu.cn

Hefei, China

Abstract

Automated vector floorplan generation is valuable for designers to
explore potential spatial designs. However, existing learning-based
methods rely on complex post-processing or optimization to obtain
plausible vector floorplans, which disrupts the end-to-end design
flow. In this paper, we propose FloorplanSBS, a patch-based segmen-
tation framework for directly synthesizing vector floorplans. Our
method leverages the strengths of box-based representation and
segmentation-based generation, following a division-and-labeling
scheme. The framework operates in two stages: given input design
constraints, a division model first divides the design space into
rectangular patches, followed by a labelling model that assigns se-
mantic labels to each patch. FloorplanSBS supports constraints such
as boundaries and layout graphs. Extensive evaluations show that it
surpasses state-of-the-art methods in generating high-quality vec-
tor floorplans. With its end-to-end neural framework, FloorplanSBS
eliminates the need for post-processing, offering a simple, efficient,
and user-friendly tool for vector floorplan design.

CCS Concepts
+ Applied computing — Computer-aided design; - Computing
methodologies — Shape modeling.

Keywords

Floorplan Generation; Vector Floorplan; Neural Network

ACM Reference Format:

Wenming Wu, Tianlei Sheng, Gaofeng Zhang, and Liping Zheng. 2025.
FloorplanSBS: Synthesizing Vector Floorplans by Patch-Based Floorplan
Segmentation. In Proceedings of the 33rd ACM International Conference on
Multimedia (MM ’25), October 27-31, 2025, Dublin, Ireland. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3746027.3754556

1 Introduction

Architectural floorplans are typically created using design software
such as AutoCAD and are represented in vector graphics, which

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM °25, Dublin, Ireland

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2035-2/2025/10

https://doi.org/10.1145/3746027.3754556

2023110572@mail.hfut.edu.cn

Gaofeng Zhang Liping Zheng"
Hefei University of Hefei University of
Technology Technology
Hefei, China Hefei, China
g.zhang@hfut.edu.cn zhenglp@hfut.edu.cn

are widely used in industrial design. However, manually drawing
floorplans requires precise sketching of floorplan structures and
defining room types and dimensions, which is time-consuming
and labor-intensive. Automated floorplan generation techniques
have garnered significant attention [15, 17, 28], helping designers
quickly explore potential design solutions. In recent years, deep
learning techniques [12, 25, 29] have led to significant advances in
the automatic generation of vector floorplans.

Image-based methods [19, 25, 29] directly predict floorplan im-
ages instead of vector floorplans. However, pixel-level segmentation
often introduces noise and neglects regular geometry elements in
vector floorplans, resulting in jagged edges and discontinuous seg-
mentation. Box-based methods [5, 12, 20], which represent rooms
with bounding boxes, simplify the problem and are easier to vector-
ize but suffer from low-level geometry issues, such as misalignment,
overlap, and displacement. Image-based methods can handle local
details effectively, but they are difficult to vectorize. Box-based
methods are more efficient to vectorize, but have limited represen-
tation and suffer from geometric issues. Therefore, existing methods
rely on complex post-processing to obtain vector floorplans, which
not only hinders the end-to-end design flow from requirements to
floorplans but also introduces additional issues, such as parameter
tuning and computational instability.

Our idea is to combine box-based representation and segmentation-
based generation. To this end, we propose a novel floorplan patch
representation, which divides the design space of floorplans into se-
mantic patches of varying sizes, similar to superpixels in floorplan
images, where the pixel value represents the semantics of floor-
plans. We aim to generate vector floorplans through FloorplanSBS,
a novel generation framework, which directly synthesizes vector
floorplans by patch division and labeling. Our framework follows
a division-and-labeling scheme. Given the design constraint, we
first divide the design space of floorplans into a set of rectangular
patches with a division model. This stage also supports user-defined
space division schemes. Then, we use a labeling model to predict
the semantic label for each patch. The final vector floorplan can
be directly obtained from the labeled patches. The division stage
provides a clear structural framework for floorplan generation,
while the labeling stage refines semantic labels, demonstrating the
method’s structure-aware capability. For sure, it naturally avoids
common geometric issues like misalignment and overlapping.

Our method supports the generation of various constraints, such
as boundary constraints and graph constraints. Experimental re-
sults, including both qualitative and quantitative analyses, demon-
strate that our method outperforms state-of-the-art methods in
generating high-quality floorplans. Our main contributions include:

https://orcid.org/0000-0002-0640-8520
https://orcid.org/0009-0005-2057-4348
https://orcid.org/0000-0003-0536-7226
https://orcid.org/0000-0001-5071-9628
https://doi.org/10.1145/3746027.3754556
https://doi.org/10.1145/3746027.3754556

MM °25, October 27-31, 2025, Dublin, Ireland

O Living room © Bedroom @ Kitchen

top _ bottom

y
F0xm Xy YT
A

'
'
'
'
'
'
'
top |
'
'
.

bottom|

|| ,

O X X9 1

Floorplan representation (a) Input

(b) Patch generation

Wenming Wu, Tianlei Sheng, Gaofeng Zhang, and Liping Zheng

@ Bathroom O Balcony @ Storage

.

B
|

(e) Visualization

-
e

!
!
I

1
]

(c) Floorplan segmentation (d) Output

Figure 1: Overview of FloorplanSBS. Left: the patch-based vector floorplan representation. (a-e): the pipeline of our framework.
Given the design constraint as input (a), our framework first divides the design space of the floorplan into patches (b). Then, we
label the generated patches via floorplan segmentation (c). The final vector floorplan (d) can be directly obtained from the
labeled patches. For visualization (e), the windows and interior doors can be added using a ruler-based method.

e a novel patch-based floorplan segmentation method that
combines the box-based representation with segmentation-
based generation and balances detailed generation with the
ease of vectorization.

e aneural-network-only framework for vector floorplan gen-
eration, without any post-processing, and is simple to imple-
ment and user-friendly.

2 Related work

2.1 Optimization for floorplan generation

Floorplan generation can be achieved through layout optimization.
Researchers have developed various intelligent optimization algo-
rithms and procedural methods [1, 3, 21, 24, 27] to address this
task. [17] uses a Bayesian network to generate bubble diagrams
of flooprplan configurations. A stochastic optimization algorithm
then transforms the diagram into a detailed floorplan. [15] considers
functional requirements, design preferences, and manufacturing
constraints such as cost and construction feasibility, and uses a
nonlinear programming algorithm for floorplan optimization. [28]
introduces a mixed-integer quadratic programming framework for
floorplans. Rooms are represented as combinations of rectangles,
and the framework iteratively refines floorplans from coarse to
detailed. Optimization-based methods rely on carefully modeling
and tedious parameter tuning, limiting their generalization. Their
dependence on manual intervention reduces flexibility in practical
applications. In contrast, our neural-based framework eliminates
the need for manual constraint design and optimization, learning
from data to provide a more generalizable solution.

2.2 Deep learning for floorplan generation

Deep learning methods eliminate the need for tedious manual in-
tervention in generating floorplans [4, 5, 16, 20]. Given the building
boundary, RPLAN [29] iteratively predicts the category and posi-
tion of rooms. Then, a semantic segmentation model is employed to

predict the semantic map of walls, which is vectorized through post-
processing to obtain the floorplan. Graph2Plan [12] uses a neural
network to convert a bubble diagram into a floorplan. However, it fo-
cuses on generating room boxes and still requires post-processing to
obtain floorplans. WallPlan [25] represents vector floorplans as wall
maps and transforms into a graph generation problem. However,
its generation process is image-based. Generative models (GAN [7]
and diffusion model [10]) are widely applied in floorplan genera-
tion. [18, 19] take a topological graph as input and use the GAN to
generate floorplan images, which require complex post-processing.
HouseDiffusion [23] applies the diffusion model but encounters chal-
lenges with predefined room shape topology and difficulties stitch-
ing room polygens, limiting its generation quality. Cons2Plan [11]
builds upon and extends HouseDiffusion by introducing conditional
diffusion models to support more generation constraints. However,
the generation quality issues remain. GSDiff [13] synthesizes vector
floorplans through structural graph generation. However, the diffu-
sion process struggles to ensure the alignment and completeness
of wall junctions, and the semantic prediction is also complex and
prone to errors. FloorplanDiffusion [32] adopts a diffusion model
framework and supports multi-conditional inputs for floorplan gen-
eration. However, it can not directly produce vectorized outputs.
Existing learning methods require post-processing (e.g., vector-
ization, alignment), increasing computational cost and instability.
In contrast, our neural-network-only framework directly gener-
ates floorplans, reducing post-processing and ensuring constraint-
aware, semantically coherent vector floorplans.

3 Method
3.1 Overview

Floorplan representation. The vector floorplan is placed in a unit-
sized design space, which is then segmented using scanning lines
along edges of each room polygon (Figure 1(a)). Horizontal and
vertical scanning lines divide the design space into a grid with
m rectangles, called a patch. Additionally, the semantic label of

FloorplanSBS: Synthesizing Vector Floorplans by Patch-Based Floorplan Segmentation

L
AEH< Jﬁ"

Input input

3
2
01z 3 4 5 6 7 eeeees 122 123 oA 125 126 121 1

Line Boundary “Boundary-fine;

VI ,
T
o X

MM °25, October 27-31, 2025, Dublin, Ireland

Tz 5456 7 w2z 1228 12 27

(a) Discrete design space (b) Classification-based division model

(c) Output (d) Floorplan patch

Figure 2: Patch generation. Given a discrete design space (a), we use a division model to perform the binary classification
for each candidate scanning lines under the input design constraint (b), the output of our division model is a set of selected
scanning lines (c), which are used to construct floorplan patches (d).

each patch is determined based on its position within the floorplan.
Specifically, if a patch lies within the floorplan, it must be within
a particular room, and the label of that room is assigned to this
patch. If the patch lies outside the floorplan, an “External” label is
assigned. Finally, a vector floorplan can be represented as a set of
patches, denoted F = {p1, p2, ..., pm}, where each labeled patch
is constructed by four surrounding scanning lines, denoted p; =
(L x}eft’ x;lght, y?)p, y?ottom}’ x%eft’ x:lght, yEOP’ y?ottom € (0,1). The
semantic label is represented as an n-dimensional one-hot vector
I; € R", where n is the number of semantic labels of floorplans.

Methodology. Our goal is to generate high-quality vectorized
floorplans from given design constraints. The main challenges we
face include simplifying the generation process while ensuring high-
quality generation, balancing the preservation of details with ease
of vectorization, and avoiding reliance on complex post-processing
and optimization. To this end, we propose a patch-based floorplan
segmentation method (Figure 1). This method effectively leverages
the powerful capabilities of neural networks for spatial partition-
ing and semantic prediction, combining the box-based representa-
tion and the segmentation-based generation. First, we use a divi-
sion model to partition the floorplan design space into rectangular
patches and then use a labeling model to predict the semantic label
for each patch, ultimately obtaining the final vectorized floorplan.
For simplicity, we will only introduce the architectural boundaries
with a front door as input, with other constraints introduced later.

3.2 Patch generation

In this stage, we divide the design space of floorplans into a set
of patches using a division model (Figure 2). The generation of
patches plays a crucial role in determining the basic layout of the
floorplan, as it defines the spatial organization of the entire design.
Each patch is characterized by its spatial boundaries within the
overall floorplan layout, and the division model is trained to predict
these boundaries along with the potential positions of the patches.

Division model. Each patch is defined by four scanning lines. In-
stead of treating the prediction of these scanning lines as a complex,
unstable, and difficult-to-optimize regression task, we formulate
patch generation as a classification task for scanning lines. We dis-
cretize the unit-sized design space into a 128 x 128 grid, following

1 O[]

)L

Figure 3: Patch generation with rectangular boundaries.

the resolution of floorplan annotations in the dataset. This process
divides the design space into 128 horizontal scanning lines and 128
vertical scanning lines, with each scanning line serving as the candi-
date. The goal is to select a subset of these candidate scanning lines
to construct patches. Rather than performing a 128-class classifica-
tion task, we treat each candidate scanning line as an independent
binary classification task. For each scanning line, a classification
network predicts whether it is selected or not. By converting the
patch generation problem into a binary classification problem for
all scanning lines, we avoid the complexity of regression tasks.
In our classification network, we use a modified version of ResNet-
34 [8] as the backbone network. We represent the input boundary
asa (128 x 128) image. Therefore, the input to the classification net-
work is a (128 X 128) multi-channel image (defaults to 0), including
the mask image of the boundary and the candidate scanning line:
o Line mask: the mask of the candidate scanning line.
e Boundary mask: the mask of the input boundary, with dif-
ferent pixel values for the exterior walls and the front door.
e Boundary-line mask: the union mask of Boundary mask
and Line mask.

Training and inference. In the training, for each candidate scan-
ning line, the network performs binary classification to determine
whether the candidate scanning line should be part of the final
patch boundary under the input constraint. We use the standard
cross-entropy loss function and the Adam optimizer [14] for train-
ing. In the inference, given the input constraint, through iteratively
performing the binary classification of each candidate scanning line,
the final output is a set of selected scanning lines, which are used to
define the boundaries of floorplan patches. While our patch division
is guided by the input boundary, it is not rigidly constrained by it.

MM °25, October 27-31, 2025, Dublin, Ireland

OLiving room © Bedroom @ Kitchen @ Bathroom

SR TR T
: J

O Balcony @ Storage

Transformer Encoder

- P EPaP op- UQD%

Linear Projection of Flattened Patches

Position
Embeddmg

Testing [

Figure 4: Floorplan segmentation. We adopt a ViT-based la-
beling model for floorplan segmentation. In the training, we
adopt a progressive training strategy. We randomly retain
a certain proportion of the semantic labels of the patches
as input and predict the semantic labels for the remaining
patches. During the inference phase, the network outputs
the semantic labels for all patches in a single pass.

The division model learns spatial priors from data and generates
scanning lines based on both geometry and semantic context. As
a result, even with a simple rectangular boundary, the model can
produce diverse and meaningful patches, as shown in Figure 3.

3.3 Floorplan segmentation

Given the design constraint and the pre-divided patches, the task of
floorplan segmentation is to use a labeling model to assign semantic
labels to each patch, which naturally avoids common geometric
issues like misalignment and overlapping in floorplan generation.

Labeling model. Our labeling model is inspired by Vision Trans-
former (ViT) [6]. Just as ViT divides the image into small patches
for processing, we have partitioned the floorplan design space into
multiple rectangular patches. However, instead of regular image
patches, we use semantically meaningful regions derived from prior-
based architectural divisions. The sequence of flattened patches, as
well as the input constraint, is fed into the labeling model, as shown
in Figure 4. The self-attention mechanism effectively captures spa-
tial relationships between patches in the floorplan, allowing the
model to focus on relevant patches and better understand complex
layouts. After the self-attention processing, the patch embeddings
undergo further processing through a series of feed-forward neural
networks to extract additional contextual information. Ultimately,
the labeling model outputs a prediction vector for each patch, using
it to generate a semantic label. We use a modified version of Trans-
former [26] as the backbone network. Moreover, the processing
aligns naturally with our patch-wise representation, enabling accu-
rate semantic labeling of structured patches.

We represent the input boundary as a (128 x 128) image (defaults
to 0), including the mask image of the boundary and the candidate

Wenming Wu, Tianlei Sheng, Gaofeng Zhang, and Liping Zheng
S i | =
W U e W

Figure 5: Our generated floorplans from the same boundary
with different patch divisions.

e
L

scanning line. We further incorporate spatial topology via a graph-
based patch adjacency mask and embed design constraints into the
input, enabling conditional and structure-aware generation. The
details are as follows:

e Boundary mask: the mask of the input boundary, with dif-
ferent pixel values for the exterior walls and the front door.

e Patch mask: the mask of the divided patches, with a pixel
value of 0 for the unlabeled patches.

e Patch-graph-boundary mask: the union mask of Boundary
mask and the mask of the patch graph. The patch graph is
represented as a graph, where the center of each patch serves
as a node, visualized as a circle proportional to the size of the
patch. Adjacent patch nodes are connected by edges, which
are visualized as line segments.

Figure 4 provides an example of these masks. The input constraint
is encoded into a 128-dimensional feature vector (conditional fea-
ture) using a modified version of ResNet-34 [8]. The sequence of
flattened patches is first padded to the same dimension. Then, it is
encoded into a 128-dimensional embedding via a linear projection,
while position encodings are added, resulting in a 128-dimensional
embedding (patch feature). The patch and conditional features are
concatenated and input to the Transformer encoder, outputting the
predicted probabilities for all labels for each floorplan patch.

Training and inference. Directly training the network to predict
semantic labels from totally unlabeled patches is challenging. There-
fore, we adopt a progressive training strategy to address the sparse
supervision in patch-based floorplan labeling. Unlike standard seg-
mentation tasks with dense labels, our model learns semantics from
partial labels and spatial layout. During training, we gradually re-
duce the proportion of labeled patches, allowing the model to learn
to propagate contextual information. This is particularly effective
for Transformer-based models, which leverage self-attention to
capture long-range dependencies and semantic relations across
patches. Specifically, during the training process, we randomly re-
tain a certain proportion of the patch labels as input and predict the
semantic labels for the remaining patches. As training progresses,
we gradually decrease the proportion of labeled patches until zero.
This progressive training strategy aids in stabilizing the training
process and accelerating convergence. In this way, our model can
better handle the complexity of predicting semantic labels. In the
training, we optimize the labeling network by minimizing the stan-
dard cross-entropy loss. The Adam optimizer [14] is used. During
the inference phase, the semantics prediction network takes the con-
straints and divides the unlabeled patches as input. The network

FloorplanSBS: Synthesizing Vector Floorplans by Patch-Based Floorplan Segmentation

outputs the semantic labels for all patches in a single pass. Fur-
thermore, this stage supports user-defined space division, meeting
specific design requirements. We show floorplans generated from
the same boundary with different patches in Figure 5, illustrating
the impact of different patch divisions.

3.4 Floorplan vectorzation

Through patch-based floorplan segmentation, we convert the de-
sign space into a series of labeled patches, which simplifies the
floorplan vectorization process. By merging adjacent patches with
the same semantic label, we can easily reconstruct the floorplan.
Single patches labeled with specific room types, such as the bath-
room and balcony, directly form rectangular rooms. When multiple
patches with the same label are combined, they form more complex
polygonal-shaped rooms, such as living rooms and bedrooms. This
method enables efficient vectorization by treating each room or
functional area as a geometric primitive (e.g., rectangle or polygon).
The result is a vectorized floorplan that preserves the spatial and
functional structure of the original design.

By formulating floorplan generation as a segmentation task over
predefined patches, both semantic and spatial consistency are han-
dled within the network. The explicit patch division guarantees
well-aligned regions, while the labeling model directly predicts
semantic labels without requiring geometric correction. As a result,
our method produces clean vector outputs in a single forward pass,
avoiding unstable and error-prone post-processing.

4 Experiment

Our two models, the division model and the labeling model, are
implemented using Pytorch and separately trained on an NVIDIA
GeForce GTX 4090 GPU. Training requires about 2.5 hours (300
epochs) for the division model (21 million parameters) and 6.5
hours (600 epochs) for the labeling model (30 million parameters).
For more implementation details, we would like to release the
code. We use a large-scale residential floorplan dataset RPLAN,
containing more than 80K residential floorplans with dense anno-
tation, which is presented in [29]. We use the processed versison
of RPLAN dataset by Graph2Plan [12], with the same dataset splits
of Graph2Plan: 70%, 15%, and 15% for training, validation, and test-
ing, respectively. There are 13 room categories in the dataset: Liv-
ingRoom, MasterRoom, SecondRoom, GuestRoom, ChildRoom, Study-
Room, DiningRoom, Bathroom, Kitchen, Balcony, Storage, Wall-in,
and Entrance. During progressive training, the unlabeled patch ratio
is gradually increased: 0.5 before epoch 200, 0.7 before epoch 300,
0.9 before epoch 400, and 1.0 after epoch 400.

Constrained generation. FloorplanSBS supports various types of
design constraints. During both training and inference, we can
easily adapt the framework by replacing the input constraint. Our
framework remains unchanged and adapts to different constraints
simply by modifying the input masks. In our experiments, we fur-
ther explore floorplan generation under layout graph constraints [12],
where nodes represent rooms and edges denote room adjacencies.
Each node also carries additional attributes, such as the room’s cen-
ter position and size. Since our framework is built on image-based
neural networks, we convert the layout graph into a raster image
to match our input format. Specifically, the graph is visualized at a

MM °25, October 27-31, 2025, Dublin, Ireland

O LivingRoom © Bedroom @ Bathroom @ Kitchen O Balcony @ Storage

B HEL
O N
4§ =T
o
= ES
] =L

Figure 6: Qualitative evaluation of floorplan generation based
on the boundary constraint.

RPLAN Ground truth

Graph2Plan

183535 A

e
B T R ED A R

Ours-1T

fixed geometric scale, with each node rendered as a labeled circle
representing a room, and the size of each circle is proportional to
the room’s area. Adjacent nodes are connected by line segments
to indicate spatial relationships. For layout graph constraints, the
boundary is still required as input. Thus, the division and labeling
models take as input the boundary mask, patch-graph-boundary
mask, and graph mask, combined as a multi-channel input. For
topological graph constraints, the boundary is unnecessary, so we
simply exclude the boundary mask from the input.

4.1 Qualitative evaluation

We present two generation versions of our framework: Ours-I,
which generates floorplans based on the generated floorplan patches
using our division model, and Ours-II, which generates floorplans
based on the ground-truth floorplan patches.

Boundary-constrained generation. We qualitatively evaluate our
method by comparing with RPLAN [29], Graph2Plan [12] and
WallPlan [25] under the boundary constraint. Figure 6 shows the
generated floorplans of various methods. RPLAN often produces
unclosed walls, leading to misclassifications (e.g., misclassifying the
living room) and unnecessary walls, as seen in the second and sixth
columns. Graph2Plan generates walls corresponding to rooms, but
some room locations are illogical, and certain room categories are
missing. In the third and fourth columns, rooms appear in illogical
positions, reducing layout plausibility. Graph2Plan does not omit
essential rooms but often creates rooms with unreasonable sizes
or excessive numbers of rooms, as shown in the first and second
columns. In contrast, our method consistently generates reason-
able layouts. Additionally, by constructing rooms from multiple
patches, we directly model the relationship between room type and

MM °25, October 27-31, 2025, Dublin, Ireland

Living Room © Bedroom @ Bathroom @ Kitchen (@) Balcony [] Storage

% B
T

A ER
[: £2 B2 3 =0 [

Graph2Plan Layout graph Ground truth O

=

Ours-1

Ours-IT

Figure 7: Qualitative evaluation of floorplan generation based
on the layout graph constraint.

2

Graph

CHF Sk e

HouseDiffusion House-GAN++

Ours

Y
0 B B
) e, e O
W 0013

Figure 8: Qualitative evaluation of floorplan generation based
on the topological graph constraint.

area, avoiding unreasonable room sizes. Ours-II, using ground-truth
segmentations, outperforms Ours-I, providing results that more
closely resemble the ground truth. This shows that more accurate
segmentations lead to better results.

Graph-constrained generation. We compare the results of graph-
constrained generation with Graph2Plan [12] and WallPlan [25]
(Figure 7). Note that the graph-constrained generation requires the
boundary to be used jointly as input. The room areas in our results
are more consistent with the ground truth, particularly for smaller
rooms. Our method ensures that no rooms are omitted, whereas
Graph2Plan and WallPlan occasionally miss certain room categories.

Wenming Wu, Tianlei Sheng, Gaofeng Zhang, and Liping Zheng

O Living Room O Bedroom . Bathroom . Kitchen O Balcony [] Storage

-
i
of
2

(Boundary)

Ours-I1 Graph2Plan

(Boundary)

(Boundary)
Ll_l_l:

Ours-1 GraphZPlanI Ours-11

(Layout graph) ~ (Layout graph) ~ |

La
d 4
= s
3 od 2

Ours-11
(Layout graph)
‘mal

Figure 9: The intermediate room maps generated by different
methods. Our results exceed the baseline method.

For instance, in the first column, Ours-I produces results that are
nearly identical to the ground truth, while Graph2Plan shows no-
ticeable deviations in the bathroom and kitchen, and WallPlan gen-
erates incorrect room types. Overall, our method produces more
semantically and geometrically plausible floorplans, with room ar-
eas closer to the ground truth. Furthermore, Ours-I produces results
comparable to Ours-II, which uses the ground-truth patches, indicat-
ing that the layout graph offers sufficient structural and semantic
guidance for both patch division and labeling. We also compare
the floorplans generated by our method with those produced by
House-GAN++ [19] and HouseDiffusion [23]. Both methods gener-
ate floorplans solely from a topological graph, without requiring
the boundary as input. Additionally, the topological graph used
in these methods does not contain information about room posi-
tions or sizes. Our method can also generate floorplans using only
the topological graph as a constraint, enabled by a simple strat-
egy. Specifically, we adopt a retrieval-based approach similar to
WallPlan [25]: Given a topological graph, we retrieve a matching
layout graph from a predefined dataset. The retrieved layout graph
is then used to guide the constrained floorplan generation. Figure 8
shows that the quality of floorplans generated by our method is
much higher than that of House-GAN++ and HouseDiffusion.

More qualitative evaluation. We also perform a qualitative evalu-
ation of the intermediate results. Figure 9 shows the intermediate
room maps produced by our method and Graph2Plan. Our gen-
erated semantic maps do not have jagged boundaries or outliers.
Our method, based on patch division, ensures horizontal or vertical

FloorplanSBS: Synthesizing Vector Floorplans by Patch-Based Floorplan Segmentation

Ground truth

71 HE
BHO00E

RPLAN
(Boundarv)

L@

8 A A o £ FE
£F £ €3 £3 €7]
\4‘
T

Ours-1

Ours-II
(Boundarv)

A

Ours-1
(Lavout granh)

Ours-I1
(Lavout granh)

Figure 10: The intermediate wall maps produced by different
methods. Our results exceed the baseline method.

Method MMD (]) FID(]) KID(]) mACC () mioU ()
RPLAN (Boundary) 3.498 4.975 51.53 0.6563 0.7007
Graph2Plan (Boundary) 3.507 1.758 7.466 0.6282 0.6817
WallPlan (Boundary) 3.525 1.91 10.01 0.6654 0.7118

Ours-I (Boundary)
Ours-II (Boundary)
Graph2Plan (Layout graph) 3.419 1.027 3.119 0.8649 0.9303
WallPlan (Layout graph) 3.363 1.078 4.943 0.9157 0.9577
Ours-I (Layout graph)
Ours-II (Layout graph)

Table 1: The quantitative evaluation of floorplans generated
by different methods. KID and MMD are scaled by 10%.

Method FID(]) KID(]) MMD (x10%) (])
House-GAN++ | 73.5187 0.0842 4.1716
HouseDiffusion | 11.7128 0.0115 4.1694

Ours 9.0288 0.0102 8.8742

Table 2: The quantitative evaluation of floorplan generation
under the topological graph constraint.

boundaries with tightly arranged patches, resulting in no gaps or
distorted boundaries. We compare the intermediate wall maps with
RPLAN, as shown in Figure 10. Our walls are always closed, while
RPLAN sometimes generates unclosed segments, which can affect
subsequent results. Comparing Ours-I (Boundary) with Ours-I (Lay-
out graph), the latter, with ground truth segmentations, generates
results very close to the ground truth. Additionally, Ours-II (Lay-
out graph), using ground truth segmentations, outperforms Ours-I
(Layout graph) in more complex wall scenarios.

MM °25, October 27-31, 2025, Dublin, Ireland

Method MMD (|) FID(]) KID(]) mACC(]) mloU(T) RI(])
Graph2Plan (Boundary) 35094 53.3386 716.8 0.6554 0.6554 0.2318
Ours-I (Boundary)
Ours-II (Boundary)
Graph2Plan (Layout graph) 3.506
Ours-I (Layout graph)
Ours-II (Layout graph)

Table 3: The evaluation of intermediate room maps generated
by different methods. KID and MMD are scaled by 10%.

52,6304 708.1 0.8368 0.8368 0.4074

Method MMD (|) FID(]) KID(])
RPLAN (Boundary) 3.49 2.456 19.25
Ours-I (Boundary) 3.457 1.3041
Ours-II (Boundary) 3.039 0.9589 4.28

Ours-I (Layout graph) 5.724
Ours-II (Layout graph)

Table 4: The evaluation of intermediate wall maps generated
by different methods. KID and MMD are scaled by 10%.

4.2 Quantitative evaluation

We compare our method with RPLAN, GraphZ2Plan, and WallPlan.
The results for the boundary-based and graph-based generation are
shown in Table 1, and our method achieves the best performance
across all metrics. Regarding generation quality metrics, Ours-I per-
forms best in FID (Fréchet Inception Distance) [9] and KID (Kernel
Inception Distance) [2], achieving the lowest scores, indicating the
smallest gap between generated samples and the real distribution.
This means our method generates more realistic and credible results.
Additionally, inspired by point cloud evaluation metrics [31], we
also calculate MMD (Maximum Mean Discrepancy). Our method
shows the lowest deviation in MMD, further confirming high consis-
tency between generated and real data distributions. Our method
performs best in IoU (Intersection over Union) and ACC (Accu-
racy), reflecting high precision and consistency in target region
segmentation. Moreover, Ours-II (Boundary) and Ours-II (Layout
graph) show improvements across all metrics when using ground
truth segmentations, especially in mACC, demonstrating the signif-
icant impact of high-quality segmentations on performance. Table 2
presents the quantitative evaluation of floorplan generation under
the topological graph constraint. The results demonstrate that our
method significantly outperforms House-GAN++ and HouseDiffu-
sion in terms of generation quality.

The results of intermediate room maps generated by different
methods are shown in Table 3. Graph2Plan may produce jagged
pixels between rooms, which do not occur in our results. To evalu-
ate this, we use RI [30], the product of the average IoU of matched
rooms and F1-score, to evaluate room integrity. Ours I performs
well across all metrics, particularly in RI, where our results are sig-
nificantly better. The intermediate results from Graph2Plan contain
many outlier pixels, reducing IoU/TP values and increasing false
positives, which affects RI.

The results of intermediate wall maps generated by different
methods are shown in Table 4. Ours-I (Layout graph) outperforms
Ours-II (Layout graph) in FID and KID, showing that our model
can generate wall results similar to those produced with ground
truth segmentations when given bubble diagram inputs. At the

MM °25, October 27-31, 2025, Dublin, Ireland

Method MMD (]) FID(]) KID(]) mACC () mloU(7)
Regression model 3.069 1.012 5.925 0.9441 0.9218
Ours 2215 04387 1430 0.9441 0.9938
Table 5: Ablation study for the division model under layout
graph constraints. KID and MMD are scaled by 10%.

Method mAcc (T) RI(T)
w/o division model (Using boundary lines) | 0.5795 0.3020
w/o division model (Using regular patches) | 0.5673 0.1725

w/o Transformer (Using GAT) 0.9140 0.7324
w/o progressive training 0.9163 0.7602
Ours 0.9273 0.8322

Table 6: Ablation study under the boundary constraint.

same time, Ours-I (Boundary) achieves the second-best KID value,
demonstrating that the wall details generated by our model based
on the boundary are close to the real ground truth. This indicates
that our segmentation line and patch classification algorithms work
well together to produce walls closely matching the ground truth.

4.3 Ablation study

Our model consists of two main components: a division model for
patch generation and a labeling model for floorplan segmentation.
We conduct ablation studies on each component individually. The
ablation experiments demonstrate the effectiveness of our method,
highlighting the contributions of each component.

For the division model, our default method employs a classifi-
cation network to generate floorplan patches. As a baseline, we
implement a regression-based variant that directly predicts the co-
ordinates of horizontal and vertical scanning lines. The comparison
results under the layout graph constraint are shown in Table 5. To
further validate the effectiveness of our division model, we perform
additional ablation experiments with two simplified alternatives: (1)
w/o division model (Using boundary lines): patches are generated
by extending and intersecting the boundary lines directly, without
any learned division. (2) w/o division model (Using regular patches):
the design space is evenly divided into a regular grid without con-
sidering input constraints or semantic structure. The comparison
results are shown in Table 6.

For the labeling model, we adopt a Transformer-based architec-
ture as the backbone. A progressive training strategy is applied,
in which a proportion of patch labels is randomly retained as in-
put, and this proportion is gradually reduced to zero throughout
training. We conduct ablation experiments under the boundary
constraint to evaluate the contributions of different components in
the labeling model. Specifically, we replace the Transformer with a
Graph Attention Network (GAT) [22] to examine the impact of the
attention mechanism (w/o Transformer (Using GAT)). In addition,
we evaluate the effect of removing the progressive training strategy
by directly training the model without partial label supervision
(w/o progressive training). The results are presented in Table 6.
Note that we calculate the mAcc of patches.

Wenming Wu, Tianlei Sheng, Gaofeng Zhang, and Liping Zheng

Method Avg. Time (s) Std. mACC Std. mIoU Std. RI
RPLAN (Boundary) 4.00 0.2027 0.2110 0.2529
Graph2Plan (Boundary) 0.40 0.1930 0.2049 0.2358
WallPlan (Boundary) 0.74 0.1840 0.1908 0.2161
Ours (Boundary) 0.12 0.1481 0.1746 0.2487

Table 7: Computational analysis of different methods under
the boundary constraint.

4.4 Computational analysis

We further compare the computational efficiency of different meth-
ods under the boundary constraint. The average execution time
for generating a single floorplan is summarized in Table 7. RPLAN
is the slowest, taking approximately 4.00 seconds per sample due
to its two-stage generation process and raster-to-vector conver-
sion. Graph2Plan is more efficient, with an average runtime of 0.40
seconds, while WallPlan takes about 0.74 seconds. In contrast, our
method is significantly faster, requiring only 0.12 seconds to gen-
erate a complete floorplan. For fairness, all methods are evaluated
under the same hardware environment using an NVIDIA GeForce
RTX 3090 GPU. Beyond efficiency, we also assess generation sta-
bility by computing the standard deviation of evaluation metrics
across multiple runs. Our method consistently demonstrates high
stability with low variance in performance. In contrast, RPLAN,
Graph2Plan, and WallPlan exhibit greater variability, largely due to
their reliance on non-deterministic post-processing steps, such as
raster-to-vector conversion or heuristic refinement.

5 Conclusion

In this paper, we proposed Floor-
planSBS, a novel framework for the
automatic generation of vector floor-
plans based on patch-based segmenta-
tion. This method allows for the di-
rect synthesis of vector floorplans with-
out requiring post-processing. Exten-
sive experiments demonstrate that Floor-
planSBS outperforms existing methods
in generating high-quality floorplans. Some limitations remain and
point to promising future directions. Our current patch division
is relatively rigid, using axis-aligned patches that may struggle
to capture complex or curved structures. Our framework can be
extended to non-axis-aligned floorplan generation by adopting a
hybrid grid with different patch shapes, such as rectangles and trian-
gles. For curved floorplans, we first generate straight-line floorplans
and then transform selected segments into smooth curves, such as
Bézier curves or arcs. While our method performs well across vari-
ous constraints and metrics, it has some limitations. In rare cases,
the division model may fail to produce ideal scanning lines, espe-
cially with irregular or narrow boundaries, leading to fragmented
patches and minor semantic errors. Although our method avoids
post-processing, semantically implausible layouts may still occur,
such as placing incompatible rooms adjacent. This stems from the
local nature of patch-level predictions and the lack of explicit design
constraints. Future work may incorporate architectural priors or
constraint-aware training to further enhance layout realism.

FloorplanSBS: Synthesizing Vector Floorplans by Patch-Based Floorplan Segmentation

Acknowledgments

We would like to thank the anonymous reviewers for their con-
structive suggestions and comments. This work is supported by the
National Natural Science Foundation of China (Grant No. 62372152)
and the Open Project Program of the State Key Laboratory of
CAD&CG (Grant No. A2412), Zhejiang University.

References

(1]

[2

=

[10]

(1

[12

[13]

[14

[15]

Arash Bahrehmand, Thomas Batard, Ricardo Marques, Alun Evans, and Josep
Blat. 2017. Optimizing layout using spatial quality metrics and user preferences.
Graphical models 93 (2017), 25-38.

Mikotaj Binkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton.
2018. Demystifying mmd gans. arXiv preprint arXiv:1801.01401 (2018).

Sumit Bisht, Krishnendra Shekhawat, Nitant Upasani, Rahil N Jain, Rid-
dhesh Jayesh Tiwaskar, and Chinmay Hebbar. 2022. Transforming an adjacency
graph into dimensioned floorplan layouts. In Computer Graphics Forum, Vol. 41.
Wiley Online Library, 5-22.

Stanislas Chaillou. 2020. ArchiGAN: Artificial Intelligence x Architecture. In
Architectural Intelligence. Springer, 117-127.

Qi Chen, Qi Wu, Rui Tang, Yuhan Wang, Shuai Wang, and Mingkui Tan. 2020.
Intelligent home 3d: Automatic 3d-house design from linguistic descriptions
only. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 12625-12634.

Alexey Dosovitskiy. 2020. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. Advances in neural information processing systems 30
(2017).

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840-6851.
Shibo Hong, Xuhong Zhang, Tianyu Du, Sheng Cheng, Xun Wang, and Jianwei
Yin. 2024. Cons2Plan: Vector Floorplan Generation from Various Conditions via
a Learning Framework based on Conditional Diffusion Models. In Proceedings of
the 32nd ACM International Conference on Multimedia. 3248-3256.

Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Van Kaick, Hao Zhang, and Hui
Huang. 2020. Graph2plan: Learning floorplan generation from layout graphs.
ACM Transactions on Graphics (TOG) 39, 4 (2020), 118-1.

Sizhe Hu, Wenming Wu, Yuntao Wang, Benzhu Xu, and Liping Zheng. 2024.
GSDiff: Synthesizing Vector Floorplans via Geometry-enhanced Structural Graph
Generation. arXiv preprint arXiv:2408.16258 (2024).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Han Liu, Yong-Liang Yang, Sawsan AlHalawani, and Niloy J Mitra. 2013.
Constraint-aware interior layout exploration for pre-cast concrete-based build-
ings. The Visual Computer 29, 6 (2013), 663-673.

[16

[17

(18

[19

[20]

[21

[22

[23

™~
=)

[25

[26

[27

[28

[29

[30

[31

[32

MM °25, October 27-31, 2025, Dublin, Ireland

Ziniu Luo and Weixin Huang. 2022. FloorplanGAN: Vector residential floorplan
adversarial generation. Automation in Construction 142 (2022), 104470.

Paul Merrell, Eric Schkufza, and Vladlen Koltun. 2010. Computer-generated
residential building layouts. In ACM SIGGRAPH Asia 2010 papers. 1-12.

Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg Mori, and Yasutaka Fu-
rukawa. 2020. House-gan: Relational generative adversarial networks for graph-
constrained house layout generation. In European Conference on Computer Vision.
Springer, 162-177.

Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu, Chin-Yi
Cheng, and Yasutaka Furukawa. 2021. House-GAN++: Generative Adversarial
Layout Refinement Network towards Intelligent Computational Agent for Profes-
sional Architects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 13632-13641.

Wamiq Para, Paul Guerrero, Tom Kelly, Leonidas J Guibas, and Peter Wonka.
2021. Generative layout modeling using constraint graphs. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 6690-6700.

Julian F Rosser, Gavin Smith, and Jeremy G Morley. 2017. Data-driven estimation
of building interior plans. International Journal of Geographical Information
Science 31, 8 (2017), 1652-1674.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural

networks 20, 1 (2008), 61-80.
Mohammad Amin Shabani, Sepidehsadat Hosseini, and Yasutaka Furukawa. 2023.

Housediffusion: Vector floorplan generation via a diffusion model with discrete
and continuous denoising. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 5466—-5475.

Krishnendra Shekhawat, Nitant Upasani, Sumit Bisht, and Rahil N Jain. 2021. A
tool for computer-generated dimensioned floorplans based on given adjacencies.
Automation in Construction 127 (2021), 103718.

Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Liping
Zheng. 2022. Wallplan: synthesizing floorplans by learning to generate wall
graphs. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1-14.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Xiao-Yu Wang and Kang Zhang. 2020. Generating layout designs from high-level
specifications. Automation in Construction 119 (2020), 103288.

Wenming Wu, Lubin Fan, Ligang Liu, and Peter Wonka. 2018. MIQP-based
Layout Design for Building Interiors. In Computer Graphics Forum, Vol. 37. Wiley
Online Library, 511-521.

Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, and Ligang
Liu. 2019. Data-driven interior plan generation for residential buildings. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1-12.

Bingchen Yang, Haiyong Jiang, Hao Pan, and Jun Xiao. 2023. Vectorfloorseg:
Two-stream graph attention network for vectorized roughcast floorplan segmen-
tation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 1358-1367.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath
Hariharan. 2019. Pointflow: 3d point cloud generation with continuous normal-
izing flows. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 4541-4550.

Pengyu Zeng, Wen Gao, Jun Yin, Pengjian Xu, and Shuai Lu. 2024. Residen-
tial floor plans: Multi-conditional automatic generation using diffusion models.
Automation in Construction 162 (2024), 105374.

	Abstract
	1 Introduction
	2 Related work
	2.1 Optimization for floorplan generation
	2.2 Deep learning for floorplan generation

	3 Method
	3.1 Overview
	3.2 Patch generation
	3.3 Floorplan segmentation
	3.4 Floorplan vectorzation

	4 Experiment
	4.1 Qualitative evaluation
	4.2 Quantitative evaluation
	4.3 Ablation study
	4.4 Computational analysis

	5 Conclusion
	Acknowledgments
	References

