
GSDiff: Synthesizing Vector Floorplans via
Geometry-enhanced Structural Graph Generation - Supplements

Sizhe Hu, Wenming Wu*, Yuntao Wang, Benzhu Xu, Liping Zheng∗

Hefei University of Technology
2024010072@mail.hfut.edu.cn, wwming@hfut.edu.cn, wyt@mail.hfut.edu.cn, {bzxu, zhenglp}@hfut.edu.cn

Preliminary
Diffusion models are a class of generative models that train
neural networks to cleverly reverse a noise-adding process,
enabling them to generate samples that simulate the original
samples of the dataset from simple noise. A standard dif-
fusion model typically consists of a forward process and a
reverse process.

In the forward process, noise is gradually added to the
original sample V0 over T steps, resulting in a noisy sample
VT that resembles Gaussian noise. For a given time step t,
this process generates a noisier version Vt using the follow-
ing equation:

Vt =
√
αtV0 +

√
1− αtϵ (1)

where αt = α1α2 · · ·αt is the cumulative product of coef-
ficients αi used to control the proportion of the signal V0 in
Vt, and ϵ is standard Gaussian noise. As t increases, the pro-
portion of noise becomes larger until it approaches the pure
Gaussian noise.

The reverse process starts with Gaussian noise and grad-
ually denoises it to reconstruct the original sample V0. Less
noisy versions of the original sample are recovered step by
step using a neural network parameterized by θ, which out-
puts ϵθ as an estimation of the added noise. The probability
distribution at time t− 1 for the noisy sample Vt is given by

pθ(Vt−1|Vt) = N (Vt−1;µθ(Vt, t), σ
2I) (2)

where

µθ(Vt, t) =
1

√
αt

(
Vt −

1− αt√
1− αt

ϵθ(Vt, t)

)
(3)

σ2 is the variance associated with the diffusion process and
N denotes the Gaussian distribution.

Node generation
Network architecture
The network architecture of the node Transformer (Figure 1)
consists of stacked Transformer decoder layers (×L). The in-
put to the node Transformer is the node set Vt and the time

*Corresponding authors: Wenming Wu, Liping Zheng
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

FFN

FFN

Global
Self-Attention

Norm

× L

Node Embeddings

Attention Mask
Norm

Attention

Add

Add

Figure 1: The network architecture of the node Transformer.

step t. For a node vi = (ci, ri, bi) ∈ [−1, 1)2+7+1, we first
obtain the node embedding fi ∈ Rd, where d denotes the
embedding dimension. Specifically, for the positional coor-
dinates of the node, we first denormalize ci = (xi, yi) ∈
[−1, 1)2 back to [0, 255]2 and use the positional encoding
proposed by (Vaswani et al. 2017), f c

i = [γ(xi), γ(yi)] ∈
Rd, where γ(t) is defined as

γ(t) = [sin(ω0t), cos(ω0t), . . . , sin(ωkt), cos(ωkt)] (4)

where k = d
4 − 1, ωj =

(
1

10000

) 4j
d , and d is the embed-

ding dimension. For the semantic and background attributes
(ri, bi) of the node, we use a fully connected layer to map
(ri, bi) into a d-dimensional space to obtain the embedding
f
(r,b)
i ∈ Rd. The time step t is encoded to represent the

noise level, and we use FFN to obtain the time embedding
f t
i ∈ Rd. The final node embedding of vi is obtained by

fusing all three embeddings

fi = f c
i + f

(r,b)
i + f t

i (5)

The network architecture of the node Transformer consists
of multiple decoder layers, with the input being the node

embeddings of all nodes. Each decoder layer includes nor-
malization, multi-head global self-attention, residual con-
nections, and FFN, where the attention module models the
dependencies between all nodes. Considering the variable
number of nodes of each sample, we use background nodes
to pad the node set to the same shape. The output of the
decoder is a set of node embeddings, which, after passing
through several decoder layers, are used to predict the noise
parameters ϵθ of pθ(Vt−1|Vt) at the next time step.

Alignment loss
High-quality structural graphs of architectural floorplans re-
quire geometric consistency, meaning nodes must align well.
The alignment loss is used to measure the alignment error
between nodes of the structural graph. Inspired by (Li et al.
2020), we define the alignment error of each node as the
minimum distance between that node and all other nodes in
any direction. Optimizing node alignment can be achieved
by optimizing the sum of alignment errors of all nodes. We
take the sum of alignment errors of all nodes as the align-
ment loss.

We use the predicted noise ϵθ and Equation 1 to predict
node set V̂0. For V̂0, we have

Alg(V̂0) =

n∑
i=1

g(min
(
∆cXi ,∆cYi

)
) (6)

where n denotes the number of nodes in the node set, g(x) =
−d·log(1− x

d), ∆c∗i = min∀j ̸=i |c∗i −c∗j |, ∗ ∈ A = {X,Y },
and d represents the maximum allowable distance in direc-
tion ∗. Since the range of the positional coordinate for each
node is [−1, 1), d = 1− (−1) = 2.

However, the inherent regression errors of neural net-
works present a challenge. Directly optimizing the regres-
sion loss, typically the MSE loss) of the neural network does
not work well. One solution is to use a discrete coordinate
representation to optimize the alignment loss. HouseDiffu-
sion (Shabani, Hosseini, and Furukawa 2023) employs an 8-
bit binary integer representation for coordinates within the
range [0, 255], which, in theory, could facilitate the model
in learning precise alignment. However, this approach intro-
duces notable risks in practice. For instance, consider a coor-
dinate represented by the binary value [1, 0, 0, 0, 0, 0, 1, 1]2

(131). If a prediction error occurs at the 4th bit, the actual
predicted result would be [1, 0, 0, 0, 1, 0, 1, 1]2 (139), caus-
ing the coordinate to erroneously jump from 131 to 139. This
magnitude of error significantly exceeds what would typi-
cally occur with direct regression methods.

To harmonize the advantages of binary representation and
alignment loss, we convert the alignment error of each node
into the binary form for regression. The discreteness intro-
duced by the binary form helps to suppress noise to some
extent, while the alignment loss constrains larger deviations.
This method effectively avoids the pitfalls of high-bit in-
accuracies and promotes coordinate alignment through dis-
cretization. The binary alignment loss is as follows

Alg2(V̂0) =

n∑
i=1

g2(

s∑
j=1

(
Base2

(
min

(
∆cXi ,∆cYi

)))
j
)

(7)

min(Δbi
X, Δbi

Y) = 8.39 Real-value

(0020.120331130...)4

Base4(·)

[0,255]
 ε<0.1

0 + 0 + 2 + 0 + 1 + 2 = 5

g4(x) = -18 log(1 - x/18)

(3333.33)4 3*6=18
5.86

Figure 2: Quaternary alignment error. Left: The calcula-
tion process of a quaternary alignment error. Right: Plot of
g4(x) = −18 log

(
1− x

18

)
. g4(x) is used to impose penal-

ties on larger alignment errors. When the independent vari-
able (the alignment error of a single node) approaches 0,
g4(x) approximates x; when the independent variable ap-
proaches x = d4 = 18, an infinite penalty will be imposed.
The larger the independent variable, the greater the penalty.

where Base2(·) is the binary representation, ∆c∗i =
minj ̸=i |c∗i − c∗j |, ∗ ∈ {X,Y }, g2(x) = −d2 log

(
1− x

d2

)
,

with d2 indicating the maximum allowable distance under
the binary representation. n is the node number, s is the bit
size. To calculate the binary alignment loss, we convert the
coordinate range from [−1, 1) to [0, 255] (corresponding to
8 bits). We take a precision of 1×10−1 (corresponding to 4-
bit binary fraction), so s is set to 12 in our experiments. We
use the L1 norm of the binary vector to represent the binary
distance, therefore,

d2 =

∥∥∥∥∥∥∥
1, 1, 1, . . . , 1, 1, 1︸ ︷︷ ︸

12

2

−

0, 0, 0, . . . , 0, 0, 0︸ ︷︷ ︸
12

2
∥∥∥∥∥∥∥
1

= 12

(8)
As we convert the coordinate range from [−1, 1) to [0, 255],
we finally normalize the binary alignment loss by a scaling
factor of 1/128. The notation (·)j represents the j-th bit.

Binary learning treats high and low bits equally important,
which is not optimal for gradient-based optimization. To bal-
ance precision and optimizability, we propose a mixed-base
optimization strategy, combining multiple numeric bases:
we trade off computational complexity (which increases lin-
early with the number of bases) and representation granu-
larity by adding quaternary, octal, and hexadecimal bases to
the binary and real number representations. The quaternary,
octal, and hexadecimal losses are similar to those in binary.
The bit size s is 6, 5, and 3 for these three bases, respectively.
The L1 norm of the corresponding base vectors dk is 18, 35,
and 45, respectively. The normalization scaling factor is also
1/128. Without loss of generality, we illustrate the calcula-
tion process of a quaternary alignment error in Figure 2.

The final mixed-base alignment loss is given by

MixAlg(V̂0) = Alg(V̂0) +
∑

k∈2,4,8,16

Algk(V̂0) (9)

LACE (Chen et al. 2024) suggests applying alignment loss at
larger time t, which may degrade performance, so they use a

FFN

FFN

Global
Self-Attention

Norm

× L

Edge Embeddings

Attention Mask
Norm

Attention

Add

Add

Padding

FFN

True/False λθ
＾

Figure 3: The network architecture of the edge Transformer.

time-dependent constraint weight, applying larger alignment
loss weights only at smaller time t. We also apply this weight
function, multiplying it with the alignment loss: ω(t) = 1−
αT−t where αT−t is from Equation 1.

Clamping
During sampling (i.e., the reverse process of the diffusion
model), the neural network’s estimation of data at t = 0
may exceed reasonable ranges, causing deviation in the sam-
pling path and degrading generation quality. The clamping
technique limits the neural network’s output to reasonable
ranges to prevent such occurrences. In our case, the normal-
ized coordinates for node attributes are limited to [−1, 1)2,
and other attributes are constrained to {0, 1}. According to
Equation 2, the predicted noise ϵθ in the reverse process will
be converted into the prediction V̂0. We clamp V̂0 within
these ranges at each step of the reverse process to improve
generation quality. We set the threshold of all semantic at-
tributes to 0.5 and the threshold of background attributes to
0.75 to avoid missing nodes.

Edge prediction
Network architecture
We use the edge Transformer to perform binary classifica-
tion (“True/False”) on the candidate edges. The network ar-
chitecture of the edge Transformer (Figure 3) consists of
stacked Transformer decoder layers (×L), each compris-
ing normalization, multi-head global self-attention, residual
connections, and FFN. The input to the Edge Transformer
consists of the embeddings of the candidate edge set E′ and
the padding mask constructed for E′, where an edge is con-
sidered non-padding only if both of its endpoints are non-
padding. After passing through several decoder layers, the
output embeddings of the candidate edges are fed through
an FFN to predict the authenticity of the edges. All edges

{a

}b

0.24a

0.76a

0.46b
0.54b

λ=0.24
~

λ=0.46
~

Figure 4: Edge perception enhancement. This figure shows
the relationship between λ̃ and the position of the interpo-
lation point for candidate edges of lengths a and b. For the
candidate edge of length a, the interpolation point divides
the candidate edge into two segments with a length ratio of
0.76:0.24 (regardless of whether the interpolation coefficient
λ is 0.24 or 0.76), then λ̃ is equal to the smaller of the two,
which is 0.24. The interpolation coefficient λ is random each
time, ensuring that every point on the entire candidate edge
can be selected.

identified as “True” form the edge set E, which is the output
of the edge prediction.

Edge perception enhancement
In general, the edge prediction model only uses the features
of two endpoints as the edge features, which lack sufficient
geometric information, resulting in missing or false edges
and making the edge prediction unreasonable. To enhance
the ability of edge perception, we propose a self-supervised
edge perception enhancement strategy, as shown in Figure 4.
Specifically, for each candidate edge, we introduce a third
point at a random location on the edge, determined by a ran-
dom coefficient λ. As a result, each edge is no longer repre-
sented solely by two endpoints, but by two endpoints along
with a randomly interpolated point. The model is trained
to predict this interpolation coefficient λ, which forces the
model to better perceive edges. This strategy improves the
geometric reasoning capability of the model by introducing
additional geometric features for each edge.

For each candidate edge (vi, vj), the enhanced edge fea-
tures include the features of both endpoints, as well as the
feature combination of the random interpolation point. The
interpolation point feature is determined by the interpolation
coefficient λ, which decides the location of the interpolation
point on the edge. The coordinates and semantics of the in-
terpolation point are as follows

cλ = λci + (1− λ)cj ∈ [−1, 1)2 (10)

rλ = 0 ∈ R7 (11)

where λ ∼ U(0, 1) is a uniformly distributed interpolation
coefficient sampled from the range [0, 1]. The zero vector 0
represents semantics, as the semantics at the random inter-
polation point on any candidate edge do not contribute to

geometric reasoning. The loss for the self-supervised term
is defined as

λ̃ =

{
1− λ, if λ > 0.5,

λ, otherwise.
(12)

Lλ = E
[∣∣∣λ̃− λ̂θ(eij)

∣∣∣] (13)

where λ̂θ(eij) represents the predicted interpolation coeffi-
cient. We process the original interpolation coefficient λ ∈
[0, 1] as follows: if λ > 0.5, we use 1 − λ; otherwise, we
keep it as is. This is done because the edges are undirected,
so the model cannot distinguish which endpoint is the refer-
ence point during prediction. The total loss is defined as

Ledge = Lcls + Lλ (14)

where Lcls is the Cross-entropy classification loss, and Lλ

is the interpolation coefficient regression loss.
It is noteworthy that our edge perception enhance-

ment strategy differs significantly from the mixup tech-
nique (Zhang et al. 2017) in both implementation and objec-
tive. The mixup technique creates new samples by blending
two random samples from the training data, aiming to im-
prove the model’s generalization and its resistance to adver-
sarial samples. In contrast, our strategy is tailored to enhance
the model’s perception of the geometric characteristics of
edges within a structure. We assign a distinct interpolation
coefficient to each candidate edge and train the model to pre-
dict this coefficient, enabling the model to discern the con-
tinuity of points along the edge, treating the candidate edge
as a whole line segment rather than just two endpoints. This
is crucial for the edge prediction task, which involves geo-
metric inference. Unlike the mixup technique, whose goal
is to smooth the decision boundary in the model’s output
space, our strategy focuses on enriching the input feature
space with geometric features that are directly pertinent to
the current task.

Floorplan extraction
The floorplan extraction process is easy to implement. We
can simply extract all minimal polygonal cycles as rooms.
This process involves starting from a certain edge in the
structural graph, following a predefined order of nodes,
moving from the smaller-numbered endpoint to the larger-
numbered endpoint, and consistently turning the maximum
angle in a fixed clockwise (or counterclockwise) direction to
select the corresponding next edge. This process continues
until it returns to the starting edge, and all edges traversed
during this process form a minimal polygonal cycle. This
procedure is illustrated in Figure 5. Specifically, we traverse
all edges to obtain all polygonal cycles and select the non-
duplicate ones. In practice, we apply the following simple
rule to avoid obtaining duplicate polygons: for each edge, if
it has been traversed in the order from the smaller-numbered
endpoint to the larger-numbered endpoint, it is marked as
visited and will not be visited again. Each time, we only tra-
verse edges that have not been visited.

[]

[] []

[]

Living room

Bedroom

Bathroom

Balcony

Kitchen

Storage

Figure 5: An example of floorplan extraction.

3 64 64

64 128128
128 256 256 256 512 512 512 1024 1024

1024

1024512

512512512512256256256
256128128128

1286464643

256
128

pooling
convolution
upsample
identity

Encoder

Decoder

L1 Loss

Figure 6: The network architecture of the autoencoder for
boundary constraints.

Constrained generation

Training paradigm

We do not directly train the constraint encoder and node gen-
eration model jointly, as this would limit training on a train-
ing dataset of finite size. Given the critical importance of
the quality of the constraint encoder, we first train each con-
straint encoder separately to achieve near-lossless perfor-
mance, and then train the constraint encoder and node gener-
ation model jointly. To train the constraint encoder, we adopt
a pre-training + fine-tuning paradigm: we first perform pre-
training using randomly generated samples (which can be
considered as having an infinite size of the training dataset),
and then fine-tune the model on our training dataset. This
strategy enhances generalization capability. The training is
based on the reconstruction loss of the autoencoder.

Boundary-constrained generation
In architectural floorplans, the boundary refers to the con-
tour formed by the outer walls of the building, typically rep-
resented as a polygon. Given its geometric nature, we use the
Convolutional Neural Network (CNN) to encode it. Specifi-
cally, during the pre-training phase, the input to the CNN is
heuristically constructed. We determine each polygon vertex
through a random walk on a 256× 256 three-channel blank
image, where each vertex’s 2D coordinates are uniformly
sampled across the entire image. The edges of the polygon
are drawn in layers with different colors: green (7 pixels),
blue (5 pixels), red (3 pixels), and black (1 pixel). The num-
ber of vertices, corresponding to the number of random walk
steps, is sampled from the training dataset.

We modified the U-Net structure (Ronneberger, Fischer,
and Brox 2015) by removing the skip connections and con-
verting it into an autoencoder, adding residual connections
between layers to improve performance. As the network
depth increases, the number of channels in the encoder grad-
ually increases, and we replace identity mapping with 1× 1
convolution. The network output is also a 256 × 256 three-
channel image, and we compute the L1 loss between the in-
put and output images. Figure 6 illustrates the network ar-
chitecture of the autoencoder for boundary constraints. For
fine-tuning, we use the real boundary sample from the train-
ing dataset. The boundaries are drawn with black lines 7 pix-
els wide, and the same loss is used for training.

Topology-constrained generation
The topological graph is defined as an undirected graph
Gtop = (Vtop, Etop), where each vertex vtop,i = (ri) ∈
Vtop represents a room, and a one-hot encoded vector
ri ∈ {0, 1}7 indicates the room category. The edge
(vtop,i, vtop,j) ∈ Etop represents an adjacency relationship
between a pair of rooms (i.e., whether they share a wall).
Considering the graph-like nature of this problem, we use
the topology Transformer to encode it.

In the pre-training, we pre-compute room counts (ranging
from 4 to 8), adjacency relationships (“True” or “False”),
and room categories from the dataset. We then randomly
sample the room count, adjacency relationships, and room
categories to construct random topological graphs, which
are used as input to the topology Transformer. Since the
room count in the topological graph is uncertain, padding
is required, and a cross-attention mask is used to limit atten-
tion to all nodes and real rooms. The input to the topology
Transformer is Gtop and the cross-attention mask, where the
room set Vtop attends to the given adjacency relationships
Etop. After passing through several encoder layers, the out-
put is the room embeddings.

In the fine-tuning, we perform room classification and
adjacency relationship classification tasks on the topologi-
cal graph as reconstruction tasks: room classification forces
room embeddings to contain their category information,
while adjacency relationship classification forces room em-
beddings to contain the correct adjacency relationships. As a
result, room embeddings effectively encode the entire infor-
mation of the topological graph, serving as a constraint for

Topological Graph

Attention Mask

Masked
Attention

Room Embeddings

Topological
Self-Attention

× M

Norm

Norm

FFN

FFN FFN

Room Class Adjacent Relation

Figure 7: The network architecture of the topology Trans-
former. Gray in attention mask: which attention are masked.

node generation. Both room classification and adjacency re-
lationship classification use the cross-entropy loss. The net-
work architecture of the topology Transformer is shown in
Figure 7. We fine-tune using the real topological graphs from
the training dataset.

Experimental setup
The implementation details of the different networks are as
follows, with hyperparameters chosen based on empirical
observations and performance on the validation dataset.

Unconstrained generation
Node Transformer The node Transformer consists of 24
layers with an embedding dimension of 256, resulting in a
total of 19 million parameters. The batch size is set to 256,
and the optimizer is Adam (Kingma 2014). The training is
conducted for 1,000,000 steps. The initial learning rate is
1 × 10−4, which is reduced by a factor of 0.1 after 500,000
steps.

Edge Transformer The edge Transformer consists of 12
layers with an embedding dimension of 256, resulting in a
total of 10 million parameters. The batch size is set to 8.
Given the significant impact of edge prediction quality on
the results, we implement a learning rate decay strategy for
training: the initial learning rate is 1 × 10−4, and the op-
timizer is Adam (Kingma 2014). The performance on the
validation dataset is closely monitored, and if the validation
metric shows no improvement for five consecutive evalua-
tions, the learning rate is reduced by a factor of 0.1. If there
is no improvement for 20 consecutive evaluations, training is
terminated, and the model with the best performance on the
validation dataset is selected. Evaluation is performed every

1,000 steps. The performance of the edge prediction model
peaked at 61,000 steps.

Constrained generation
For the constrained generation, we increased the embedding
dimension of the node Transformer to 512, resulting in a to-
tal of 96 million parameters. This change is made as we have
observed that using the same 19 million parameters, adding
topological constraints could reduce performance, possibly
due to the difficulty of accommodating multiple types of in-
formation such as topological graphs and coordinates within
the 256-dimensional space. The boundary constraints are
configured similarly. The configuration of the Edge Trans-
former remained unchanged.

Boundary CNN The boundary CNN has 31 million pa-
rameters. During the pre-training phase, the batch size is set
to 16, and the optimizer is Adam (Kingma 2014) with an
initial learning rate of 1 × 10−4. We use the same learning
rate decay strategy for training as the edge Transformer. The
performance peaked at 5,000 steps during pre-training. For
fine-tuning, we restarted the learning rate at 1 × 10−4 with
a batch size of 16, and evaluation was performed every 100
steps, continuing training until 6,700 steps.

Topology Transformer The topology Transformer con-
sists of 24 layers with an embedding dimension of 256, re-
sulting in a total of 19 million parameters. During the pre-
training phase, the batch size is set to 2048, and the opti-
mizer is Adam (Kingma 2014) with an initial learning rate
of 1 × 10−4. We use the same learning rate decay strat-
egy for training as the edge Transformer. The performance
peaked at 11,000 steps during pre-training. For fine-tuning,
we restarted the learning rate at 1 × 10−4 with a batch size
of 256, continuing training for 6,000 steps with the same
method.

Dataset
We first extract the 2D coordinates of wall junctions and seg-
ments. The image is binarized, with the walls represented
as white and all other areas as black. Due to varying wall
thicknesses, we regularize the thickness through repeated
morphological operations (erosion, dilation) and template
matching. We iteratively erode the white pixels representing
the wall junction components until the next erosion step re-
sults in a decrease in the number of connected components
in the image. This indicates that some wall segments have
been eroded to a thickness of 1 pixel.

Next, we apply a series of template matching operations,
sliding a 3×3 window across the image at this stage. If a
match is successful, the matching area (the 3×3 window)
is marked as white. The templates represent lines with a
thickness of 1 pixel or local wall shapes that are defec-
tive. Through this process, the shape of the walls is gradu-
ally standardized, and the thickness becomes more uniform.
This iterative process continues until the erosion reduces the
thickness of all walls to 1 pixel; at this point, further ero-
sion would cause all walls to disappear, turning the image
completely black. At this stage, the wall structure is what
we require.

Finally, the wall junctions and segments are extracted
from the image, where the wall thickness has been uni-
formly reduced to 1 pixel. We obtain semantics from the
four-channel images of the original RPLAN dataset. Any
images that fail to process at this step are discarded. We
obtain 71,763 vectorized floorplan images, randomly split-
ting them into 3,000 for the validation set, 3,000 for the
test set, and the remainder for the training set. In the orig-
inal RPLAN dataset, rooms are divided into 14 categories,
which we merged into 7 categories: Living room, Bedroom,
Kitchen, Bathroom, Balcony, Storage, External area.

Figure 8 (b1) shows some floorplan samples obtained
from the above process. The RPLAN dataset (Wu et al.
2019) comes from real residential layouts, which do not con-
tain slanted walls. To verify that our method is also appli-
cable to floorplans with slanted walls, we heuristically de-
form the “peninsula-like” rectangular balcony which sur-
rounded by the External area on three sides into an isosceles
trapezoid with the top base being 0.618 times the length of
the bottom base. The data after the slanting deformation is
shown in Figure 8 (b2).

We have conducted distributional statistics (Figure 8(a))
on the processed RPLAN dataset (Wu et al. 2019), includ-
ing the number of wall junctions, the number of wall seg-
ments, the number of rooms, and the quantity of each room
category.

More results
Figure 9 displays a comparison of boundary-constrained
generation across different methods, including the ground-
truth (GT), Graph2Plan (Hu et al. 2020), WallPlan (Sun
et al. 2022), and ours. Figure 10 provides a comparison of
topology-constrained generation among various techniques.
including HouseDiffsion (Shabani, Hosseini, and Furukawa
2023), House-GAN++ (Nauata et al. 2021) and ours. Fig-
ure 11 showcases the results of unconstrained generation.
Figure 12 showcases the results of unconstrained generation
with slanted walls. Figures 13 and 14 present the results of
boundary-constrained generation by our method, while Fig-
ures 15 and 16 illustrate the results of topology-constrained
generation by our method.

References
Chen, J.; Zhang, R.; Zhou, Y.; and Chen, C. 2024. Towards
Aligned Layout Generation via Diffusion Model with Aes-
thetic Constraints. arXiv preprint arXiv:2402.04754.

Hu, R.; Huang, Z.; Tang, Y.; Van Kaick, O.; Zhang, H.; and
Huang, H. 2020. Graph2plan: Learning floorplan generation
from layout graphs. ACM Transactions on Graphics (TOG),
39(4): 118–1.

Kingma, D. 2014. Adam: a method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

Li, J.; Yang, J.; Zhang, J.; Liu, C.; Wang, C.; and Xu,
T. 2020. Attribute-conditioned layout gan for automatic
graphic design. IEEE Transactions on Visualization and
Computer Graphics, 27(10): 4039–4048.

(a1) (a2) (a3)

(a4) (b1) (b2)

Figure 8: Dataset. (a1)-(a4): distributional statistics on the processed RPLAN dataset (Wu et al. 2019), including the quantity
of each room category (a1), the number of rooms (a2), the number of wall junctions (a3) and the number of wall segments
(a4). (b1)-(b2): some data samples obtained from the above data processing, (b1) shows original floorplans, and (b2) shows
floorplans with slanted walls.

Nauata, N.; Hosseini, S.; Chang, K.-H.; Chu, H.; Cheng, C.-
Y.; and Furukawa, Y. 2021. House-gan++: Generative adver-
sarial layout refinement network towards intelligent compu-
tational agent for professional architects. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 13632–13641.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net:
Convolutional networks for biomedical image segmenta-
tion. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, 234–241. Springer.
Shabani, M. A.; Hosseini, S.; and Furukawa, Y. 2023.
Housediffusion: Vector floorplan generation via a diffusion
model with discrete and continuous denoising. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5466–5475.
Sun, J.; Wu, W.; Liu, L.; Min, W.; Zhang, G.; and Zheng, L.
2022. Wallplan: synthesizing floorplans by learning to gen-
erate wall graphs. ACM Transactions on Graphics (TOG),
41(4): 1–14.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.
Wu, W.; Fu, X.-M.; Tang, R.; Wang, Y.; Qi, Y.-H.; and Liu,
L. 2019. Data-driven interior plan generation for residential
buildings. ACM Transactions on Graphics (TOG), 38(6):
1–12.

Zhang, H.; Cisse, M.; Dauphin, Y.; and Lopez-Paz, D. 2017.
mixup: Beyond Empirical Risk Minimization.

Input boundary GT Graph2Plan WallPlan Ours

Figure 9: More on the comparison of boundary-constrained generation across different methods.

Input topology HouseDiffsion House-GAN++ Ours

Figure 10: More on the comparison of topology-constrained generation among various techniques.

Figure 11: More results of unconstrained generation by our method.

Figure 12: More results of unconstrained generation with slanted walls by our method.

Figure 13: More results of boundary-constrained generation by our method: part (I).

Figure 14: More results of boundary-constrained generation by our method: part (II).

Figure 15: More results of topology-constrained generation by our method: part (I).

Figure 16: More results of topology-constrained generation by our method: part (II).

